ﻻ يوجد ملخص باللغة العربية
In a previous work we introduced Besov spaces $mathcal{B}^s_{p,q}$ defined on a measure spaces with a good grid, with $pin [1,infty)$, $qin [1,infty]$ and $0< s< 1/p$. Here we show that classical Besov spaces on compact homogeneous spaces are examples of such Besov spaces. On the other hand we show that even Besov spaces defined by a good grid made of partitions by intervals may differ from a classical Besov space, giving birth to exotic Besov spaces.
We use the method of atomic decomposition to build new families of function spaces, similar to Besov spaces, in measure spaces with grids, a very mild assumption. Besov spaces with low regularity are considered in measure spaces with good grids, and
Some Besov-type spaces $B^{s,tau}_{p,q}(mathbb{R}^n)$ can be characterized in terms of the behavior of the Fourier--Haar coefficients. In this article, the authors discuss some necessary restrictions for the parameters $s$, $tau$, $p$, $q$ and $n$ of
Let $1le p<infty$, $0<q<infty$ and $ u$ be a two-sided doubling weight satisfying $$sup_{0le r<1}frac{(1-r)^q}{int_r^1 u(t),dt}int_0^rfrac{ u(s)}{(1-s)^q},ds<infty.$$ The weighted Besov space $mathcal{B}_{ u}^{p,q}$ consists of those $fin H^p$ such
In this article, the authors introduce Besov-type spaces with variable smoothness and integrability. The authors then establish their characterizations, respectively, in terms of $varphi$-transforms in the sense of Frazier and Jawerth, smooth atoms o
In this paper, we consider the trace theorem for modulation spaces, alpha modulation spaces and Besov spaces. For the modulation space, we obtain the sharp results.