ﻻ يوجد ملخص باللغة العربية
We study theoretically the transport properties of a three-dimensional spin texture made from three orthogonal helices, which is essentially a lattice of monopole-antimonopole pairs connected by Skyrmion strings. This spin structure is proposed for MnGe based on the neutron scattering experiment as well as the Lorentz transmission electron microscopy observation. Equipped with a sophisticated spectral analysis method, we adopt finite temperature Greens function technique to calculate the longitudinal dc electric transport in such system. We consider conduction electrons interacting with spin waves of the topologically nontrivial spin texture, wherein fluctuations of monopolar emergent magnetic field enter. We study in detail the behavior of electric resistivity under the influence of temperature, external magnetic field and a characteristic monopole motion, especially a novel magnetoresistivity effect describing the latest experimental observations in MnGe, wherein a topological phase transition signifying strong correlation is identified.
The latest experimental advances have extended the scenario of coupling mechanical degrees of freedom in chiral magnets (MnSi/MnGe) to the topologically nontrivial skyrmion crystal and even monopole lattices. Equipped with a spin-wave theory highligh
Transverse electric (TE) modes can not propagate through the conducting solids. This is because the continuum of particle-hole excitations of conductors contaminates with the TE mode and dampes it out. But in solids hosting tilted Dirac cone (TDC) th
While nondissipative hydrodynamics in two-dimensional electron systems has been extensively studied, the role of nondissipative viscosity in three-dimensional transport has remained elusive. In this work, we address this question by studying the nond
The band-touching points of stable, three-dimensional, Kramers-degenerate, Dirac semimetals are singularities of a five-component, unit vector field and non-Abelian, $SO(5)$-Berrys connections, whose topological classification is an important, open p
Single-crystal carbon nanomaterials have led to great advances in nanotechnology. The first single-crystal carbon nanomaterial, fullerene, was fabricated in a zero-dimensional form. One-dimensional carbon nanotubes and two-dimensional graphene have s