ﻻ يوجد ملخص باللغة العربية
Transverse electric (TE) modes can not propagate through the conducting solids. This is because the continuum of particle-hole excitations of conductors contaminates with the TE mode and dampes it out. But in solids hosting tilted Dirac cone (TDC) that admit a description in terms of a modified Minkowski spacetime, the new spacetime structure remedies this issue and therefore a tilted Dirac cone material (TDM) supports the propagation of an undamped TE mode which is sustained by density fluctuations. The resulting TE mode propagates at fermionic velocities which strongly confines the mode to the surface of the two-dimensional (2D) TDM.
Tilted Dirac/Weyl fermions admit a geometric description in terms of an effective spacetime metric. Using this metric, we formulate the hydrodynamics theory for tilted Dirac/Weyl materials in $d+1$ spacetime dimensions. We find that the mingling of s
In a graphene-based Josephson junction, the Andreev reflection can become specular which gives rise to propagating Andreev modes. These propagating Andreev modes are essentially charge neutral and therefore they transfer energy but not electric charg
Exciton problem is solved in the two-dimensional Dirac model with allowance for strong electron-hole attraction. The exciton binding energy is assumed smaller than but comparable to the band gap. The exciton wavefunction is found in the momentum spac
We study theoretically the transport properties of a three-dimensional spin texture made from three orthogonal helices, which is essentially a lattice of monopole-antimonopole pairs connected by Skyrmion strings. This spin structure is proposed for M
The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics including phenomena such as spin-charge separation. Substantial theoretical efforts have attempted to ex