ترغب بنشر مسار تعليمي؟ اضغط هنا

A new cubic Hall viscosity in three-dimensional topological semimetals

138   0   0.0 ( 0 )
 نشر من قبل Barry Bradlyn
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While nondissipative hydrodynamics in two-dimensional electron systems has been extensively studied, the role of nondissipative viscosity in three-dimensional transport has remained elusive. In this work, we address this question by studying the nondissipative viscoelastic response of three dimensional crystals. We show that for systems with tetrahedral symmetries, there exist new, intrinsically three-dimensional Hall viscosity coefficients that cannot be obtained via a reduction to a quasi-two-dimensional system. To study these coefficients, we specialize to a theoretically and experimentally motivated tight binding model for a chiral magentic metal in (magnetic) space group [(M)SG] $P2_13$ (No.~198$.$9), a nonpolar group of recent experimental interest which hosts both chiral magnets and topological semimetals. Using the Kubo formula for viscosity, we compute the nondissipative Hall viscosity for the spin-1 fermion in two ways. First we use an electron-phonon coupling ansatz to derive the phonon strain coupling and associated phonon Hall viscosity. Second we use a momentum continuity equation to derive the viscosity corresponding to the conserved momentum density. We conclude by discussing the implication of our results for hydrodynamic transport in three-dimensional magnetic metals, and discuss some candidate materials in which these effects may be observed.



قيم البحث

اقرأ أيضاً

The band-touching points of stable, three-dimensional, Kramers-degenerate, Dirac semimetals are singularities of a five-component, unit vector field and non-Abelian, $SO(5)$-Berrys connections, whose topological classification is an important, open p roblem. We solve this problem by performing second homotopy classification of Berrys connections. Using Abelian projected connections, the generic planes, orthogonal to the direction of nodal separation, and lying between two Dirac points are shown to be higher-order topological insulators, which support quantized, chromo-magnetic flux or relative Chern number, and gapped, edge states. The Dirac points are identified as a pair of unit-strength, $SO(5)$- monopole and anti-monopole, where the relative Chern number jumps by $pm 1$. Using these bulk invariants, we determine the topological universality class of different types of Dirac semimetals. We also describe a universal recipe for computing quantized, non-Abelian flux for Dirac materials from the windings of spectra of planar Wilson loops, displaying $SO(5)$-gauge invariance. With non-perturbative, analytical solutions of surface-states, we show the absence of helical Fermi arcs, and predict the fermiology and the spin-orbital textures. We also discuss the similarities and important topological distinction between the surface-states Hamiltonian and the generator of Polyakov loop of Berrys connections.
We study the interaction between elliptically polarized light and a three-dimensional Luttinger semimetal with quadratic band touching using Floquet theory. In the absence of light, the touching bands can have the same or the opposite signs of the cu rvature; in each case, we show that simply tuning the light parameters allows us to create a zoo of Weyl semimetallic phases. In particular, we find that double and single Weyl points can coexist at different energies, and they can be tuned to be type I or type II. We also find an unusual phase transition, in which a pair of Weyl nodes form at finite momentum and disappear off to infinity. Considering the broad tunability of light and abundance of materials described by the Luttinger Hamiltonian, such as certain pyrochlore iridates, half-Heuslers and zinc-blende semiconductors, we believe this work can lay the foundation for creating Weyl semimetals in the lab and dynamically tuning between them.
Dislocations are ubiquitous in three-dimensional solid-state materials. The interplay of such real space topology with the emergent band topology defined in reciprocal space gives rise to gapless helical modes bound to the line defects. This is known as bulk-dislocation correspondence, in contrast to the conventional bulk-boundary correspondence featuring topological states at boundaries. However, to date rare compelling experimental evidences are presented for this intriguing topological observable, owing to the presence of various challenges in solid-state systems. Here, using a three-dimensional acoustic topological insulator with precisely controllable dislocations, we report an unambiguous experimental evidence for the long-desired bulk-dislocation correspondence, through directly measuring the gapless dispersion of the one-dimensional topological dislocation modes. Remarkably, as revealed in our further experiments, the pseudospin-locked dislocation modes can be unidirectionally guided in an arbitrarily-shaped dislocation path. The peculiar topological dislocation transport, expected in a variety of classical wave systems, can provide unprecedented controllability over wave propagations.
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit 1D higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an $s-d$-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw-Rebbi formulation of QIs and HOFA states. Employing $ab initio$ calculations, we demonstrate HOFAs in both the room- ($alpha$) and intermediate-temperature ($alpha$) phases of Cd$_{3}$As$_2$, KMgBi, and rutile-structure ($beta$-) PtO$_2$.
The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an op en Fermi surface, which cannot host the quantum Hall effect. Via a wormhole tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d-2)-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1/B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd$_3$As$_2$, or Na$_3$Bi. This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا