ﻻ يوجد ملخص باللغة العربية
We analyze the paper of Nathan D. Grubaugh et al. (Nature 546, 401-405, 2017) and find that it does not offer a convincing quantitative explanation for what generated the temporal distribution of human Zika virus (ZIKV) cases shown in their paper (Fig. 1d). We criticize this aspect because it is this understanding of how human cases develop from day-today and week-to-week within an area such as these Ground Zeros, that policymakers need in order to mitigate future outbreaks. We present results that strongly suggest that the missing piece is everyday human visit-revisit behavior. These results reproduce the human outbreak data in the key areas of Miami in 2016 very well, and give policymakers specific predictions for how changes in human flow through these areas will affect, and hence can be used to mitigate, future ZIka outbreaks in Miami and beyond.
Assessing and managing the impact of large-scale epidemics considering only the individual risk and severity of the disease is exceedingly difficult and could be extremely expensive. Economic consequences, infrastructure and service disruption, as we
Epidemic spreading has been studied for a long time and most of them are focused on the growing aspect of a single epidemic outbreak. Recently, we extended the study to the case of recurrent epidemics (Sci. Rep. {bf 5}, 16010 (2015)) but limited only
The COVID-19 pandemic poses challenges for continuing economic activity while reducing health risks. While these challenges can be mitigated through testing, testing budget is often limited. Here we study how institutions, such as nursing homes, shou
The dynamics of epidemics depend on how peoples behavior changes during an outbreak. The impact of this effect due to control interventions on the morbidity rate is obvious and supported by numerous studies based on SIR-type models. However, the exis
We study a simple reaction-diffusion population model [proposed by A. Windus and H. J. Jensen, J. Phys. A: Math. Theor. 40, 2287 (2007)] on scale-free networks. In the case of fully random diffusion, the network topology cannot affect the critical de