ﻻ يوجد ملخص باللغة العربية
The dynamics of epidemics depend on how peoples behavior changes during an outbreak. The impact of this effect due to control interventions on the morbidity rate is obvious and supported by numerous studies based on SIR-type models. However, the existing models do not explain the difference in outbreak profiles in countries with different intrinsic socio-cultural features and are rather specific for describing the complex dynamics of an outbreak. A system of models of the COVID-19 pandemic is proposed, combining the dynamics of social stress described by the tools of sociophysics8 with classical epidemic models. Even the combination of a dynamic SIR model with the classic triad of stages of general adaptation syndrome, Alarm-Resistance-Exhaustion, makes it possible to describe the available statistics for various countries of the world with a high degree of accuracy. The conceptualization of social stress leads to the division of the vulnerable population into different groups according to behavior mode, which can be tracked in detail. The sets of kinetic constants corresponding to optimal fit of model to data clearly characterize the society ability to focus efforts on protection against pandemic and keep this concentration for a considerable time. Such characterization can further help in the development of management strategies specific to a particular society: country, region, or social group.
The COVID-19 pandemic poses challenges for continuing economic activity while reducing health risks. While these challenges can be mitigated through testing, testing budget is often limited. Here we study how institutions, such as nursing homes, shou
We employ the epidemic Renormalization Group (eRG) framework to understand, reproduce and predict the COVID-19 pandemic diffusion across the US. The human mobility across different geographical US divisions is modelled via open source flight data alo
We develop a minimalist compartmental model to study the impact of mobility restrictions in Italy during the Covid-19 outbreak. We show that an early lockdown shifts the epidemic in time, while that beyond a critical value of the lockdown strength, t
We study the epidemic spreading on spatial networks where the probability that two nodes are connected decays with their distance as a power law. As the exponent of the distance dependence grows, model networks smoothly transition from the random net
The new coronavirus known as COVID-19 is spread world-wide since December 2019. Without any vaccination or medicine, the means of controlling it are limited to quarantine and social distancing. Here we study the spatio-temporal propagation of the fir