ﻻ يوجد ملخص باللغة العربية
The COVID-19 pandemic poses challenges for continuing economic activity while reducing health risks. While these challenges can be mitigated through testing, testing budget is often limited. Here we study how institutions, such as nursing homes, should utilize a fixed test budget for early detection of an outbreak. Using an extended network-SEIR model, we show that given a certain budget of tests, it is generally better to test smaller subgroups of the population frequently than to test larger groups but less frequently. The numerical results are consistent with an analytical expression we derive for the size of the outbreak at detection in an exponential spread model. Our work provides a simple guideline for institutions: distribute your total tests over several batches instead of using them all at once. We expect that in the appropriate scenarios, this easy-to-implement policy recommendation will lead to earlier detection and better mitigation of local COVID-19 outbreaks.
The dynamics of epidemics depend on how peoples behavior changes during an outbreak. The impact of this effect due to control interventions on the morbidity rate is obvious and supported by numerous studies based on SIR-type models. However, the exis
Group testing allows saving chemical reagents, analysis time, and costs, by testing pools of samples instead of individual samples. We introduce a class of group testing protocols with small dilution, suited to operate even at high prevalence ($5%-10
With a two-layer contact-dispersion model and data in China, we analyze the cost-effectiveness of three types of antiepidemic measures for COVID-19: regular epidemiological control, local social interaction control, and inter-city travel restriction.
Several European countries have suspended the inoculation of the AstraZeneca vaccine out of suspicion of causing deep vein thrombosis. In this letter we report some Fermi estimates performed using a stochastic model aimed at making a risk-benefit ana
In this paper, we propose a continuous-time stochastic intensity model, namely, two-phase dynamic contagion process(2P-DCP), for modelling the epidemic contagion of COVID-19 and investigating the lockdown effect based on the dynamic contagion model i