ﻻ يوجد ملخص باللغة العربية
We consider a certain tiling problem of a planar region in which there are no long horizontal or vertical strips consisting of copies of the same tile. Intuitively speaking, we would like to create a dappled pattern with two or more kinds of tiles. We give an efficient algorithm to turn any tiling into one satisfying the condition, and discuss its applications in texturing.
The Wang tiling is a classical problem in combinatorics. A major theoretical question is to find a (small) set of tiles which tiles the plane only aperiodically. In this case, resulting tilings are rather restrictive. On the other hand, Wang tiles ar
We exhibit a weakly aperiodic tile set for Baumslag-Solitar groups, and prove that the domino problem is undecidable on these groups. A consequence of our construction is the existence of an arecursive tile set on Baumslag-Solitar groups.
We prove Gibbs distribution of two-state spin systems(also known as binary Markov random fields) without hard constrains on a tree exhibits strong spatial mixing(also known as strong correlation decay), under the assumption that, for arbitrary `exter
Motivated by applications in reliable and secure communication, we address the problem of tiling (or partitioning) a finite constellation in $mathbb{Z}_{2^L}^n$ by subsets, in the case that the constellation does not possess an abelian group structur
In this paper a closed form expression for the number of tilings of an $ntimes n$ square border with $1times 1$ and $2times1$ cuisenaire rods is proved using a transition matrix approach. This problem is then generalised to $mtimes n$ rectangular bor