ﻻ يوجد ملخص باللغة العربية
Motivated by applications in reliable and secure communication, we address the problem of tiling (or partitioning) a finite constellation in $mathbb{Z}_{2^L}^n$ by subsets, in the case that the constellation does not possess an abelian group structure. The property that we do require is that the constellation is generated by a linear code through an injective mapping. The intrinsic relation between the code and the constellation provides a sufficient condition for a tiling to exist. We also present a necessary condition. Inspired by a result in group theory, we discuss results on tiling for the particular case when the finer constellation is an abelian group as well.
We determine the loss in capacity incurred by using signal constellations with a bounded support over general complex-valued additive-noise channels for suitably high signal-to-noise ratio. Our expression for the capacity loss recovers the power loss of 1.53dB for square signal constellations.
Despite of the known gap from the Shannons capacity, several standards are still employing QAM or star shape constellations, mainly due to the existing low complexity detectors. In this paper, we investigate the low complexity detection for a family
A posteriori probability (APP) and max-log APP detection is widely used in soft-input soft-output detection. In contrast to bijective modulation schemes, there are important differences when applying these algorithms to non-bijective symbol constella
In this paper, we propose a geometric shaping (GS) strategy to design 8, 16, 32 and 64-ary modulation formats for the optical fibre channel impaired by both additive white Gaussian (AWGN) and phase noise. The constellations were optimised to maximise
Dense constellations of Low Earth Orbit (LEO) small satellites are envisioned to make extensive use of the inter-satellite link (ISL). Within the same orbital plane, the inter-satellite distances are preserved and the links are rather stable. In cont