ﻻ يوجد ملخص باللغة العربية
We prove Gibbs distribution of two-state spin systems(also known as binary Markov random fields) without hard constrains on a tree exhibits strong spatial mixing(also known as strong correlation decay), under the assumption that, for arbitrary `external field, the absolute value of `inverse temperature is small, or the `external field is uniformly large or small. The first condition on `inverse temperature is tight if the distribution is restricted to ferromagnetic or antiferromagnetic Ising models. Thanks to Weitzs self-avoiding tree, we extends the result for sparse on average graphs, which generalizes part of the recent work of Mossel and Slycite{MS08}, who proved the strong spatial mixing property for ferromagnetic Ising model. Our proof yields a different approach, carefully exploiting the monotonicity of local recursion. To our best knowledge, the second condition of `external field for strong spatial mixing in this paper is first considered and stated in term of `maximum average degree and `interaction energy. As an application, we present an FPTAS for partition functions of two-state spin models without hard constrains under the above assumptions in a general family of graphs including interesting bounded degree graphs.
We achieve a quantum speed-up of fully polynomial randomized approximation schemes (FPRAS) for estimating partition functions that combine simulated annealing with the Monte-Carlo Markov Chain method and use non-adaptive cooling schedules. The improv
We establish a polynomial-time approximation algorithm for partition functions of quantum spin models at high temperature. Our algorithm is based on the quantum cluster expansion of Netov{c}ny and Redig and the cluster expansion approach to designing
We observe that the partition function of the set of all free massless higher spins s=0,1,2,3,... in flat space is equal to one: the ghost determinants cancel against the physical ones or, equivalently, the (regularized) total number of degrees of fr
We introduce a new mathematical object, the fermionant ${mathrm{Ferm}}_N(G)$, of type $N$ of an $n times n$ matrix $G$. It represents certain $n$-point functions involving $N$ species of free fermions. When N=1, the fermionant reduces to the determin
Let $G$ be an $n$-node graph without two disjoint odd cycles. The algorithm of Artmann, Weismantel and Zenklusen (STOC17) for bimodular integer programs can be used to find a maximum weight stable set in $G$ in strongly polynomial time. Building on s