ﻻ يوجد ملخص باللغة العربية
Standardization and harmonization efforts have reached a consensus towards using a special-purpose Vehicular Public-Key Infrastructure (VPKI) in upcoming Vehicular Communication (VC) systems. However, there are still several technical challenges with no conclusive answers; one such an important yet open challenge is the acquisition of shortterm credentials, pseudonym: how should each vehicle interact with the VPKI, e.g., how frequently and for how long? Should each vehicle itself determine the pseudonym lifetime? Answering these questions is far from trivial. Each choice can affect both the user privacy and the system performance and possibly, as a result, its security. In this paper, we make a novel systematic effort to address this multifaceted question. We craft three generally applicable policies and experimentally evaluate the VPKI system performance, leveraging two large-scale mobility datasets. We consider the most promising, in terms of efficiency, pseudonym acquisition policies; we find that within this class of policies, the most promising policy in terms of privacy protection can be supported with moderate overhead. Moreover, in all cases, this work is the first to provide tangible evidence that the state-of-the-art VPKI can serve sizable areas or domain with modest computing resources.
Vehicular communication (VC) systems have recently drawn the attention of industry, authorities, and academia. A consensus on the need to secure VC systems and protect the privacy of their users led to concerted efforts to design security architectur
Significant developments have taken place over the past few years in the area of vehicular communication (VC) systems. Now, it is well understood in the community that security and protection of private user information are a prerequisite for the dep
Vehicular Communication (VC) systems are on the verge of practical deployment. Nonetheless, their security and privacy protection is one of the problems that have been addressed only recently. In order to show the feasibility of secure VC, certain im
In spite of progress in securing Vehicular Communication (VC) systems, there is no consensus on how to distribute Certificate Revocation Lists (CRLs). The main challenges lie exactly in (i) crafting an efficient and timely distribution of CRLs for nu
Vehicular Communication (VC) systems will greatly enhance intelligent transportation systems. But their security and the protection of their users privacy are a prerequisite for deployment. Efforts in industry and academia brought forth a multitude o