ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Road - Reflections on the Security of Vehicular Communication Systems

136   0   0.0 ( 0 )
 نشر من قبل Panos Papadimitratos
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف P. Papadimitratos




اسأل ChatGPT حول البحث

Vehicular communication (VC) systems have recently drawn the attention of industry, authorities, and academia. A consensus on the need to secure VC systems and protect the privacy of their users led to concerted efforts to design security architectures. Interestingly, the results different project contributed thus far bear extensive similarities in terms of objectives and mechanisms. As a result, this appears to be an auspicious time for setting the corner-stone of trustworthy VC systems. Nonetheless, there is a considerable distance to cover till their deployment. This paper ponders on the road ahead. First, it presents a distillation of the state of the art, covering the perceived threat model, security requirements, and basic secure VC system components. Then, it dissects predominant assumptions and design choices and considers alternatives. Under the prism of what is necessary to render secure VC systems practical, and given possible non-technical influences, the paper attempts to chart the landscape towards the deployment of secure VC systems.



قيم البحث

اقرأ أيضاً

Standardization and harmonization efforts have reached a consensus towards using a special-purpose Vehicular Public-Key Infrastructure (VPKI) in upcoming Vehicular Communication (VC) systems. However, there are still several technical challenges with no conclusive answers; one such an important yet open challenge is the acquisition of shortterm credentials, pseudonym: how should each vehicle interact with the VPKI, e.g., how frequently and for how long? Should each vehicle itself determine the pseudonym lifetime? Answering these questions is far from trivial. Each choice can affect both the user privacy and the system performance and possibly, as a result, its security. In this paper, we make a novel systematic effort to address this multifaceted question. We craft three generally applicable policies and experimentally evaluate the VPKI system performance, leveraging two large-scale mobility datasets. We consider the most promising, in terms of efficiency, pseudonym acquisition policies; we find that within this class of policies, the most promising policy in terms of privacy protection can be supported with moderate overhead. Moreover, in all cases, this work is the first to provide tangible evidence that the state-of-the-art VPKI can serve sizable areas or domain with modest computing resources.
Transportation safety, one of the main driving forces of the development of vehicular communication (VC) systems, relies on high-rate safety messaging (beaconing). At the same time, there is consensus among authorities, industry, and academia on the need to secure VC systems. With specific proposals in the literature, a critical question must be answered: can secure VC systems be practical and satisfy the requirements of safety applications, in spite of the significant communication and processing overhead and other restrictions security and privacy-enhancing mechanisms impose? To answer this question, we investigate in this paper the following three dimensions for secure and privacy-enhancing VC schemes: the reliability of communication, the processing overhead at each node, and the impact on a safety application. The results indicate that with the appropriate system design, including sufficiently high processing power, applications enabled by secure VC can be in practice as effective as those enabled by unsecured VC.
Significant developments have taken place over the past few years in the area of vehicular communication (VC) systems. Now, it is well understood in the community that security and protection of private user information are a prerequisite for the dep loyment of the technology. This is so, precisely because the benefits of VC systems, with the mission to enhance transportation safety and efficiency, are at stake. Without the integration of strong and practical security and privacy enhancing mechanisms, VC systems could be disrupted or disabled, even by relatively unsophisticated attackers. We address this problem within the SeVeCom project, having developed a security architecture that provides a comprehensive and practical solution. We present our results in a set of two papers in this issue. In this first one, we analyze threats and types of adversaries, we identify security and privacy requirements, and we present a spectrum of mechanisms to secure VC systems. We provide a solution that can be quickly adopted and deployed. In the second paper, we present our progress towards the implementation of our architecture and results on the performance of the secure VC system, along with a discussion of upcoming research challenges and our related current results.
The innovations of vehicle connectivity have been increasing dramatically to enhance the safety and user experience of driving, while the rising numbers of interfaces to the external world also bring security threats to vehicles. Many security counte rmeasures have been proposed and discussed to protect the systems and services against attacks. To provide an overview of the current states in this research field, we conducted a systematic mapping study on the topic area security countermeasures of in-vehicle communication systems. 279 papers are identified based on the defined study identification strategy and criteria. We discussed four research questions related to the security countermeasures, validation methods, publication patterns, and research trends and gaps based on the extracted and classified data. Finally, we evaluated the validity threats, the study identification results, and the whole mapping process. We found that the studies in this topic area are increasing rapidly in recent years. However, there are still gaps in various subtopics like automotive Ethernet security, anomaly reaction, and so on. This study reviews the target field not only related to research findings but also research activities, which can help identify research gaps at a high level and inspire new ideas for future work.
The purpose of the covert communication system is to implement the communication process without causing third party perception. In order to achieve complete covert communication, two aspects of security issues need to be considered. The first one is to cover up the existence of information, that is, to ensure the content security of information; the second one is to cover up the behavior of transmitting information, that is, to ensure the behavioral security of communication. However, most of the existing information hiding models are based on the Prisoners Model, which only considers the content security of carriers, while ignoring the behavioral security of the sender and receiver. We think that this is incomplete for the security of covert communication. In this paper, we propose a new covert communication framework, which considers both content security and behavioral security in the process of information transmission. In the experimental part, we analyzed a large amount of collected real Twitter data to illustrate the security risks that may be brought to covert communication if we only consider content security and neglect behavioral security. Finally, we designed a toy experiment, pointing out that in addition to most of the existing content steganography, under the proposed new framework of covert communication, we can also use users behavior to implement behavioral steganography. We hope this new proposed framework will help researchers to design better covert communication systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا