ترغب بنشر مسار تعليمي؟ اضغط هنا

Secure Vehicular Communication Systems: Implementation, Performance, and Research Challenges

181   0   0.0 ( 0 )
 نشر من قبل Panos Papadimitratos
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Vehicular Communication (VC) systems are on the verge of practical deployment. Nonetheless, their security and privacy protection is one of the problems that have been addressed only recently. In order to show the feasibility of secure VC, certain implementations are required. In [1] we discuss the design of a VC security system that has emerged as a result of the European SeVeCom project. In this second paper, we discuss various issues related to the implementation and deployment aspects of secure VC systems. Moreover, we provide an outlook on open security research issues that will arise as VC systems develop from todays simple prototypes to full-fledged systems.



قيم البحث

اقرأ أيضاً

Significant developments have taken place over the past few years in the area of vehicular communication (VC) systems. Now, it is well understood in the community that security and protection of private user information are a prerequisite for the dep loyment of the technology. This is so, precisely because the benefits of VC systems, with the mission to enhance transportation safety and efficiency, are at stake. Without the integration of strong and practical security and privacy enhancing mechanisms, VC systems could be disrupted or disabled, even by relatively unsophisticated attackers. We address this problem within the SeVeCom project, having developed a security architecture that provides a comprehensive and practical solution. We present our results in a set of two papers in this issue. In this first one, we analyze threats and types of adversaries, we identify security and privacy requirements, and we present a spectrum of mechanisms to secure VC systems. We provide a solution that can be quickly adopted and deployed. In the second paper, we present our progress towards the implementation of our architecture and results on the performance of the secure VC system, along with a discussion of upcoming research challenges and our related current results.
The roles of trust, security and privacy are somewhat interconnected, but different facets of next generation networks. The challenges in creating a trustworthy 6G are multidisciplinary spanning technology, regulation, techno-economics, politics and ethics. This white paper addresses their fundamental research challenges in three key areas. Trust: Under the current open internet regulation, the telco cloud can be used for trust services only equally for all users. 6G network must support embedded trust for increased level of information security in 6G. Trust modeling, trust policies and trust mechanisms need to be defined. 6G interlinks physical and digital worlds making safety dependent on information security. Therefore, we need trustworthy 6G. Security: In 6G era, the dependence of the economy and societies on IT and the networks will deepen. The role of IT and the networks in national security keeps rising - a continuation of what we see in 5G. The development towards cloud and edge native infrastructures is expected to continue in 6G networks, and we need holistic 6G network security architecture planning. Security automation opens new questions: machine learning can be used to make safer systems, but also more dangerous attacks. Physical layer security techniques can also represent efficient solutions for securing less investigated network segments as first line of defense. Privacy: There is currently no way to unambiguously determine when linked, deidentified datasets cross the threshold to become personally identifiable. Courts in different parts of the world are making decisions about whether privacy is being infringed, while companies are seeking new ways to exploit private data to create new business revenues. As solution alternatives, we may consider blockchain, distributed ledger technologies and differential privacy approaches.
The advent of miniature biosensors has generated numerous opportunities for deploying wireless sensor networks in healthcare. However, an important barrier is that acceptance by healthcare stakeholders is influenced by the effectiveness of privacy sa feguards for personal and intimate information which is collected and transmitted over the air, within and beyond these networks. In particular, these networks are progressing beyond traditional sensors, towards also using multimedia sensors, which raise further privacy concerns. Paradoxically, less research has addressed privacy protection, compared to security. Nevertheless, privacy protection has gradually evolved from being assumed an implicit by-product of security measures, and it is maturing into a research concern in its own right. However, further technical and socio-technical advances are needed. As a contribution towards galvanising further research, the hallmarks of this paper include: (i) a literature survey explicitly anchored on privacy preservation, it is underpinned by untangling privacy goals from security goals, to avoid mixing privacy and security concerns, as is often the case in other papers; (ii) a critical survey of privacy preservation services for wireless sensor networks in healthcare, including threat analysis and assessment methodologies; it also offers classification trees for the multifaceted challenge of privacy protection in healthcare, and for privacy threats, attacks and countermeasures; (iii) a discussion of technical advances complemented by reflection over the implications of regulatory frameworks; (iv) a discussion of open research challenges, leading onto offers of directions for future research towards unlocking the door onto privacy protection which is appropriate for healthcare in the twenty-first century.
Standardization and harmonization efforts have reached a consensus towards using a special-purpose Vehicular Public-Key Infrastructure (VPKI) in upcoming Vehicular Communication (VC) systems. However, there are still several technical challenges with no conclusive answers; one such an important yet open challenge is the acquisition of shortterm credentials, pseudonym: how should each vehicle interact with the VPKI, e.g., how frequently and for how long? Should each vehicle itself determine the pseudonym lifetime? Answering these questions is far from trivial. Each choice can affect both the user privacy and the system performance and possibly, as a result, its security. In this paper, we make a novel systematic effort to address this multifaceted question. We craft three generally applicable policies and experimentally evaluate the VPKI system performance, leveraging two large-scale mobility datasets. We consider the most promising, in terms of efficiency, pseudonym acquisition policies; we find that within this class of policies, the most promising policy in terms of privacy protection can be supported with moderate overhead. Moreover, in all cases, this work is the first to provide tangible evidence that the state-of-the-art VPKI can serve sizable areas or domain with modest computing resources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا