ﻻ يوجد ملخص باللغة العربية
Sampling complex potential energies is one of the most pressing challenges of contemporary computational science. Inspired by recent efforts that use quantum effects and discretized Feynmans path integrals to overcome large barriers we propose a replica exchange method. In each replica two copies of the same system with halved potential strengths interact via inelastic springs. The strength of the spring is varied in the different replicas so as to bridge the gap between the infinitely strong spring, that corresponds to the Boltzmann replica and the less tight ones. We enhance the spring length fluctuations using Metadynamics. We test the method on simple yet challenging problems.
In this paper we propose a new formalism to map history-dependent metadynamics in a Markovian process. We apply this formalism to a model Langevin dynamics and determine the equilibrium distribution of a collection of simulations. We demonstrate that
We present a method for determining the free energy dependence on a selected number of collective variables using an adaptive bias. The formalism provides a unified description which has metadynamics and canonical sampling as limiting cases. Converge
We use exact diagonalization to study the eigenstate thermalization hypothesis (ETH) in the quantum dimer model on the square and triangular lattices. Due to the nonergodicity of the local plaquette-flip dynamics, the Hilbert space, which consists of
We present a novel method for the calculation of the energy density of states D(E) for systems described by classical statistical mechanics. The method builds on an extension of a recently proposed strategy that allows the free energy profile of a ca
A model of dipolar dimer liquid (DDL) on a two-dimensional lattice has been proposed. We found that at high density and low temperature, it has a partially ordered phase which we called glacia phase. The glacia phase transition can be understood by m