ﻻ يوجد ملخص باللغة العربية
It is well-known that the pre-2-category $mathscr{C}at_mathrm{dg}^mathrm{coh}(k)$ of small dg categories over a field $k$, with 1-morphisms defined as dg functors, and with 2-morphisms defined as the complexes of coherent natural transformations, fails to be a strict 2-category. In [T2], D.Tamarkin constructed a contractible 2-operad in the sense of M.Batanin [Ba3], acting on $mathscr{C}at_mathrm{dg}^mathrm{coh}(k)$. According to Batanin loc.cit., it is a possible way to define a weak 2-category. In this paper, we provide a construction of {it another} contractible 2-operad $mathcal{O}$, acting on $mathscr{C}at_mathrm{dg}^mathrm{coh}(k)$. Our main tool is the {it twisted tensor product} of small dg categories, introduced in [Sh3]. We establish a one-side associativity for the twisted tensor product, making $(mathscr{C}at_mathrm{dg}^mathrm{coh}(k),overset{sim}{otimes})$ a skew monoidal category in the sense of [LS], and construct a {it twisted composition} $mathscr{C}oh_mathrm{dg}(D,E)overset{sim}{otimes}mathscr{C}oh_mathrm{dg}(C,D)tomathscr{C}oh_mathrm{dg}(C,E)$, and prove some compatibility between these two structures. Taken together, the two structures give rise to a 2-operad $mathcal{O}$, acting on $mathscr{C}at_mathrm{dg}^mathrm{coh}(k)$. Its contractibility is a consequence of a general result of [Sh3].
Given two small dg categories $C,D$, defined over a field, we introduce their (non-symmetric) twisted tensor product $Coverset{sim}{otimes} D$. We show that $-overset{sim}{otimes} D$ is left adjoint to the functor $Coh(D,-)$, where $Coh(D,E)$ is the
We introduce a notion of $n$-commutativity ($0le nle infty$) for cosimplicial monoids in a symmetric monoidal category ${bf V}$, where $n=0$ corresponds to just cosimplicial monoids in ${bf V,}$ while $n=infty$ corresponds to commutative cosimplicial
In our recent papers [Sh1,2], we introduced a {it twisted tensor product} of dg categories, and provided, in terms of it, {it a contractible 2-operad $mathcal{O}$}, acting on the category of small dg categories, in which the natural transformations a
We define a tensor product of linear sites, and a resulting tensor product of Grothendieck categories based upon their representations as categories of linear sheaves. We show that our tensor product is a special case of the tensor product of locally
Restriction categories were established to handle maps that are partially defined with respect to composition. Tensor topology realises that monoidal categories have an intrinsic notion of space, and deals with objects and maps that are partially def