ترغب بنشر مسار تعليمي؟ اضغط هنا

Are There Nuclear Structure Effects on the Isoscalar Giant Monopole Resonance and Nuclear Incompressibility near A~90?

81   0   0.0 ( 0 )
 نشر من قبل Umesh Garg
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Background-free spectra of inelastic $alpha$-particle scattering have been measured at a beam energy of 385 MeV in $^{90, 92}$Zr and $^{92}$Mo at extremely forward angles, including 0$^{circ}$. The ISGMR strength distributions for the three nuclei coincide with each other, establishing clearly that nuclear incompressibility is not influenced by nuclear shell structure near $Asim$90 as was claimed in recent measurements.



قيم البحث

اقرأ أيضاً

98 - M. Hedden , U. Garg , B. Kharraja 2001
The isoscalar giant dipole resonance (ISGDR) has been investigated in 208Pb using inelastic scattering of 400 MeV alpha particles at forward angles, including 0deg. Using the superior capabilities of the Grand Raiden spectrometer, it has been possibl e to obtain spectra devoid of any instrumental background. The ISGDR strength distribution has been extracted from a multipole-composition of the observed spectra. The implication of these results on the experimental value of nuclear incompressibility are discussed.
465 - T. Li , U. Garg , Y. Liu 2007
We have investigated the isoscalar giant monopole resonance (GMR) in the Sn isotopes, using inelastic scattering of 400-MeV $alpha$-particles at extremely forward angles, including 0 deg. A value of -550 pm 100 MeV has been obtained for the asymmetry term, $K_tau$, in the nuclear incompressibility.
Experiments investigating the fine structure of the IsoScalar Giant Monopole Resonance (ISGMR) of 48Ca were carried out with a 200 MeV alpha inelastic-scattering reaction, using the high energy-resolution capability and the zero-degree setup at the K 600 magnetic spectrometer of iThemba LABS, Cape Town, South Africa. Considerable fine structure is observed in the energy region of the ISGMR. Characteristic energy scales are extracted from the experimental data by means of a wavelet analysis and compared with the state-of-the-art theoretical calculations within a Skyrme-RPA (random phase approximation) approach using the finite-rank separable approximation with the inclusion of phonon-phonon coupling (PPC). Good agreement was observed between the experimental data and the theoretical predictions.
138 - D. Patel , U. Garg , M. Fujiwara 2012
The isoscalar giant monopole resonance (ISGMR) in even-A Cd isotopes has been studied by inelastic ${alpha}$-scattering at 100 MeV/u and at extremely forward angles, including 0deg. The asymmetry term in the nuclear incompressibility extracted from t he ISGMR in Cd isotopes is found to be $K_{tau} = -555 pm 75$ MeV, confirming the value previously obtained from the Sn isotopes. ISGMR strength has been computed in relativistic RPA using NL3 and FSUGold effective interactions. Both models significantly overestimate the centroids of the ISGMR strength in the Cd isotopes. Combined with other recent theoretical effort, the question of the softness of the open-shell nuclei in the tin region remains open still.
276 - T. Li , U. Garg , Y. Liu 2007
The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112--124) with inelastic scattering of 400-MeV $alpha$ particles in the angular range $0^circ$--$8.5^circ$. We find that the experiment ally-observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in $^{208}$Pb and $^{90}$Zr very well. From the GMR data, a value of $K_{tau} = -550 pm 100$ MeV is obtained for the asymmetry-term in the nuclear incompressibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا