ترغب بنشر مسار تعليمي؟ اضغط هنا

The Isoscalar Giant Dipole Resonance in 208Pb and the Nuclear incompressibility

99   0   0.0 ( 0 )
 نشر من قبل Umesh Garg
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The isoscalar giant dipole resonance (ISGDR) has been investigated in 208Pb using inelastic scattering of 400 MeV alpha particles at forward angles, including 0deg. Using the superior capabilities of the Grand Raiden spectrometer, it has been possible to obtain spectra devoid of any instrumental background. The ISGDR strength distribution has been extracted from a multipole-composition of the observed spectra. The implication of these results on the experimental value of nuclear incompressibility are discussed.



قيم البحث

اقرأ أيضاً

425 - B.K. Nayak , U. Garg , M. Koss 2009
The excitation and subsequent proton decay of the isoscalar giant dipole resonance (ISGDR) in $^{208}$Pb have been investigated via the $^{208}$Pb($alpha, alpha^{prime}p)^{207}$Tl reaction at 400 MeV. Excitation of the ISGDR has been identified by th e difference-of-spectra method. The enhancement of the ISGDR strength at high excitation energies observed in the multipole-decomposition-analysis of the singles $^{208}$Pb($alpha,alpha^{prime}$) spectra is not present in the excitation energy spectrum obtained in coincidence measurement. The partial branching ratios for direct proton decay of ISGDR to low-lying states of $^{207}$Tl have been determined and the results are compared with predictions of continuum random-phase-approximation (CRPA) calculations.
Background-free spectra of inelastic $alpha$-particle scattering have been measured at a beam energy of 385 MeV in $^{90, 92}$Zr and $^{92}$Mo at extremely forward angles, including 0$^{circ}$. The ISGMR strength distributions for the three nuclei co incide with each other, establishing clearly that nuclear incompressibility is not influenced by nuclear shell structure near $Asim$90 as was claimed in recent measurements.
129 - M. Hunyadi , H. Hashimoto , T. Li 2009
Proton decay from the 3$hbaromega$ isoscalar giant dipole resonance (ISGDR) in $^{58}$Ni has been measured using the ($alpha,alphap$) reaction at a bombarding energy of 386 MeV to investigate its decay properties. We have extracted the ISGDR strength under the coincidence condition between inelastically scattered $alpha$ particles at forward angles and decay protons emitted at backward angles. Branching ratios for proton decay to low-lying states of $^{57}$Co have been determined, and the results compared to predictions of recent continuum-RPA calculations. The final-state spectra of protons decaying to the low-lying states in $^{57}$Co were analyzed for a more detailed understanding of the structure of the ISGDR. It is found that there are differences in the structure of the ISGDR as a function of excitation energy.
119 - I. Poltoratska 2012
Scattering of protons of several hundred MeV is a promising new spectroscopic tool for the study of electric dipole strength in nuclei. A case study of 208Pb shows that at very forward angles J^pi = 1- states are strongly populated via Coulomb excita tion. A separation from nuclear excitation of other modes is achieved by a multipole decomposition analysis of the experimental cross sections based on theoretical angular distributions calculated within the quasiparticle-phonon model. The B(E1) transition strength distribution is extracted for excitation energies up to 9 MeV, i.e., in the region of the so-called pygmy dipole resonance (PDR). The Coulomb-nuclear interference shows sensitivity to the underlying structure of the E1 transitions, which allows for the first time an experimental extraction of the electromagnetic transition strength and the energy centroid of the PDR.
512 - T. Li , U. Garg , Y. Liu 2007
We have investigated the isoscalar giant monopole resonance (GMR) in the Sn isotopes, using inelastic scattering of 400-MeV $alpha$-particles at extremely forward angles, including 0 deg. A value of -550 pm 100 MeV has been obtained for the asymmetry term, $K_tau$, in the nuclear incompressibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا