ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine structure of the isoscalar giant monopole resonance in $^{48}$Ca

610   0   0.0 ( 0 )
 نشر من قبل Sunday Olorunfunmi Dr
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Experiments investigating the fine structure of the IsoScalar Giant Monopole Resonance (ISGMR) of 48Ca were carried out with a 200 MeV alpha inelastic-scattering reaction, using the high energy-resolution capability and the zero-degree setup at the K600 magnetic spectrometer of iThemba LABS, Cape Town, South Africa. Considerable fine structure is observed in the energy region of the ISGMR. Characteristic energy scales are extracted from the experimental data by means of a wavelet analysis and compared with the state-of-the-art theoretical calculations within a Skyrme-RPA (random phase approximation) approach using the finite-rank separable approximation with the inclusion of phonon-phonon coupling (PPC). Good agreement was observed between the experimental data and the theoretical predictions.



قيم البحث

اقرأ أيضاً

The fragmentation of the Isoscalar Giant Quadrupole Resonance (ISGQR) in 40Ca has been investigated in high energy-resolution experiments using proton inelastic scattering at E_p = 200 MeV. Fine structure is observed in the region of the ISGQR and it s characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The experimental scales are well described by Random Phase Approximation (RPA) and second-RPA calculations with an effective interaction derived from a realistic nucleon-nucleon interaction by the Unitary Correlation Operator Method (UCOM). In these results characteristic scales are already present at the mean-field level pointing to their origination in Landau damping, in contrast to the findings in heavier nuclei and also to SRPA calculations for 40Ca based on phenomenological effective interactions, where fine structure is explained by the coupling to two-particle two-hole (2p-2h) states.
Background-free spectra of inelastic $alpha$-particle scattering have been measured at a beam energy of 385 MeV in $^{90, 92}$Zr and $^{92}$Mo at extremely forward angles, including 0$^{circ}$. The ISGMR strength distributions for the three nuclei co incide with each other, establishing clearly that nuclear incompressibility is not influenced by nuclear shell structure near $Asim$90 as was claimed in recent measurements.
158 - Li-Gang Cao 2012
The isoscalar giant monopole resonance (ISGMR) in Cd, Sn and Pb isotopes has been studied within the self-consistent Skyrme Hartree-Fock+BCS and quasi-particle random phase approximation (QRPA). Three Skyrme parameter sets are used in the calculation s, i.e., SLy5, SkM* and SkP, since they are characterized by different values of the compression modulus in symmetric nuclear matter, namely K=230, 217, and 202 MeV, respectively. We also investigate the effect of different types of pairing forces on the ISGMR in Cd, Sn and Pb isotopes. The calculated peak energies and the strength distributions of ISGMR are compared with available experimental data. We find that SkP fails completely to describe the ISGMR strength distribution for all isotopes due to its low value of the nuclear matter incompressibility, namely K=202 MeV. On the other hand, the SLy5 parameter set, supplemented by an appropriate pairing interaction, gives a reasonable description of the ISGMR in Cd and Pb isotopes. A better description of ISGMR in Sn isotopes is achieved by the SkM* interaction, that has a somewhat softer value of the nuclear incompressibility.
A set of high resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the Giant Dipole Resonance (GDR) in sd-shell nuclei. Understanding is provided by state-of-the-art theoretical Random Phase Approximation (RPA) calculatios for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement supports that the fine structure arises from ground-state deformation driven by alpha clustering.
415 - B.K. Nayak , U. Garg , M. Koss 2009
The excitation and subsequent proton decay of the isoscalar giant dipole resonance (ISGDR) in $^{208}$Pb have been investigated via the $^{208}$Pb($alpha, alpha^{prime}p)^{207}$Tl reaction at 400 MeV. Excitation of the ISGDR has been identified by th e difference-of-spectra method. The enhancement of the ISGDR strength at high excitation energies observed in the multipole-decomposition-analysis of the singles $^{208}$Pb($alpha,alpha^{prime}$) spectra is not present in the excitation energy spectrum obtained in coincidence measurement. The partial branching ratios for direct proton decay of ISGDR to low-lying states of $^{207}$Tl have been determined and the results are compared with predictions of continuum random-phase-approximation (CRPA) calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا