ﻻ يوجد ملخص باللغة العربية
Fault-tolerant quantum error correction is essential for implementing quantum algorithms of significant practical importance. In this work, we propose a highly effective use of the surface-GKP code, i.e., the surface code consisting of bosonic GKP qubits instead of bare two-dimensional qubits. In our proposal, we use error-corrected two-qubit gates between GKP qubits and introduce a maximum likelihood decoding strategy for correcting shift errors in the two-GKP-qubit gates. Our proposed decoding reduces the total CNOT failure rate of the GKP qubits, e.g., from $0.87%$ to $0.36%$ at a GKP squeezing of $12$dB, compared to the case where the simple closest-integer decoding is used. Then, by concatenating the GKP code with the surface code, we find that the threshold GKP squeezing is given by $9.9$dB under the the assumption that finite-squeezing of the GKP states is the dominant noise source. More importantly, we show that a low logical failure rate $p_{L} < 10^{-7}$ can be achieved with moderate hardware requirements, e.g., $291$ modes and $97$ qubits at a GKP squeezing of $12$dB as opposed to $1457$ bare qubits for the standard rotated surface code at an equivalent noise level (i.e., $p=0.36%$). Such a low failure rate of our surface-GKP code is possible through the use of space-time correlated edges in the matching graphs of the surface code decoder. Further, all edge weights in the matching graphs are computed dynamically based on analog information from the GKP error correction using the full history of all syndrome measurement rounds. We also show that a highly-squeezed GKP state of GKP squeezing $gtrsim 12$dB can be experimentally realized by using a dissipative stabilization method, namely, the Big-small-Big method, with fairly conservative experimental parameters. Lastly, we introduce a three-level ancilla scheme to mitigate ancilla decay errors during a GKP state preparation.
Bosonic quantum error correction is a viable option for realizing error-corrected quantum information processing in continuous-variable bosonic systems. Various single-mode bosonic quantum error-correcting codes such as cat, binomial, and GKP codes h
The surface code is a promising candidate for fault-tolerant quantum computation, achieving a high threshold error rate with nearest-neighbor gates in two spatial dimensions. Here, through a series of numerical simulations, we investigate how the pre
Quantum error correction protects fragile quantum information by encoding it into a larger quantum system. These extra degrees of freedom enable the detection and correction of errors, but also increase the operational complexity of the encoded logic
Conventional fault-tolerant quantum error-correction schemes require a number of extra qubits that grows linearly with the codes maximum stabilizer generator weight. For some common distance-three codes, the recent flag paradigm uses just two extra q
Extensive quantum error correction is necessary in order to perform a useful computation on a noisy quantum computer. Moreover, quantum error correction must be implemented based on imperfect parity check measurements that may return incorrect outcom