ﻻ يوجد ملخص باللغة العربية
The growth of tropical geometry has generated significant interest in the tropical semiring in the past decade. However, there are other semirings in tropical algebra that provide more information, such as the symmetrized (max, +), Izhakian-Rowens extended and supertropical semirings. In this paper we identify in which of these upper-bound semirings we can express symmetric polynomials in terms of elementary ones. This allows us to determine the tropical algebra semirings where an analogue of the Fundamental Theorem of Symmetric Polynomials holds and to what extent.
Denote by p_k the k-th power sum symmetric polynomial n variables. The interpretation of the q-analogue of the binomial coefficient as Hilbert function leads us to discover that n consecutive power sums in n variables form a regular sequence. We cons
We study the symmetric subquotient decomposition of the associated graded algebras $A^*$ of a non-homogeneous commutative Artinian Gorenstein (AG) algebra $A$. This decomposition arises from the stratification of $A^*$ by a sequence of ideals $A^*=C_
Since a tropical Nullstellensatz fails even for tropical univariate polynomials we study a conjecture on a tropical {it dual} Nullstellensatz for tropical polynomial systems in terms of solvability of a tropical linear system with the Cayley matrix a
Differential graded (DG) algebras are powerful tools from rational homotopy theory. We survey some recent applications of these in the realm of homological commutative algebra.
We investigate geometric embeddings among several classes of stacky fans and algorithms, e.g., to compute their homology. Interesting cases arise from moduli spaces of tropical curves. Specifically, we study the embedding of the moduli of tropical ho