ﻻ يوجد ملخص باللغة العربية
Since a tropical Nullstellensatz fails even for tropical univariate polynomials we study a conjecture on a tropical {it dual} Nullstellensatz for tropical polynomial systems in terms of solvability of a tropical linear system with the Cayley matrix associated to the tropical polynomial system. The conjecture on a tropical effective dual Nullstellensatz is proved for tropical univariate polynomials.
We prove a version of a Nullstellensatz for partial exponential fields $(K,E)$, even though the ring of exponential polynomials $K[X_1,ldots,X_n]^E$ is not a Hilbert ring. We show that under certain natural conditions one can embed an ideal of $K[X_1
In this paper we introduce the concept of clique disjoint edge sets in graphs. Then, for a graph $G$, we define the invariant $eta(G)$ as the maximum size of a clique disjoint edge set in $G$. We show that the regularity of the binomial edge ideal of
This is a sequel to our work in tropical Hodge theory. Our aim here is to prove a tropical analogue of the Clemens-Schmid exact sequence in asymptotic Hodge theory. As an application of this result, we prove the tropical Hodge conjecture for smooth p
The growth of tropical geometry has generated significant interest in the tropical semiring in the past decade. However, there are other semirings in tropical algebra that provide more information, such as the symmetrized (max, +), Izhakian-Rowens ex
The goal of this article is to classify unramified covers of a fixed tropical base curve $Gamma$ with an action of a finite abelian group G that preserves and acts transitively on the fibers of the cover. We introduce the notion of dilated cohomology