ﻻ يوجد ملخص باللغة العربية
Transcriptome assembly from RNA-Seq reads is an active area of bioinformatics research. The ever-declining cost and the increasing depth of RNA-Seq have provided unprecedented opportunities to better identify expressed transcripts. However, the nonlinear transcript structures and the ultra-high throughput of RNA-Seq reads pose significant algorithmic and computational challenges to the existing transcriptome assembly approaches, either reference-guided or de novo. While reference-guided approaches offer good sensitivity, they rely on alignment results of the splice-aware aligners and are thus unsuitable for species with incomplete reference genomes. In contrast, de novo approaches do not depend on the reference genome but face a computational daunting task derived from the complexity of the graph built for the whole transcriptome. In response to these challenges, we present a hybrid approach to exploit an incomplete reference genome without relying on splice-aware aligners. We have designed a split-and-align procedure to efficiently localize the reads to individual genomic loci, which is followed by an accurate de novo assembly to assemble reads falling into each locus. Using extensive simulation data, we demonstrate a high accuracy and precision in transcriptome reconstruction by comparing to selected transcriptome assembly tools. Our method is implemented in assemblySAM, a GUI software freely available at http://sammate.sourceforge.net.
Tiling arrays make possible a large scale exploration of the genome thanks to probes which cover the whole genome with very high density until 2 000 000 probes. Biological questions usually addressed are either the expression difference between two c
Oxford Nanopore MinION sequencer is currently the smallest sequencing device available. While being able to produce very long reads (reads of up to 100~kbp were reported), it is prone to high sequencing error rates of up to 30%. Since most of these e
The amount of completely sequenced chloroplast genomes increases rapidly every day, leading to the possibility to build large-scale phylogenetic trees of plant species. Considering a subset of close plant species defined according to their chloroplas
One of the most computationally intensive tasks in computational biology is de novo genome assembly, the decoding of the sequence of an unknown genome from redundant and erroneous short sequences. A common assembly paradigm identifies overlapping seq
MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate gene expression. Identification of total number of miRNAs even in completely sequenced organisms is still an open problem. However, researchers have been using techniques that can predic