ﻻ يوجد ملخص باللغة العربية
We present a laser frequency stabilization system that uses a transfer interferometer to stabilize slave lasers to a reference laser. Our implementation uses off-the-shelf optical components along with microcontroller-based digital feedback, and offers a simple, flexible and robust way to stabilize multiple laser frequencies to better than 1 MHz.
We present a novel and simple method of stabilizing the laser phase and frequency by polarization spectroscopy of an atomic vapor. In analogy to the Pound-Drever-Hall method, which uses a cavity as a memory of the laser phase, this method uses atomic
We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of $^{87}$Rb atoms - a typical atomic species for eme
We report on a calibration procedure that enhances the precision of an interferometer based frequency stabilization by several orders of magnitude. For this purpose the frequency deviations of the stabilization are measured precisely by means of a fr
In this paper we report that carrier-phase two-way satellite time and frequency transfer (TWSTFT) was successfully demonstrated over a very long baseline of 9,000 km, established between the National Institute of Information and Communications Techno
Ultraviolet (UV) diode lasers are widely used in many photonics applications. But their frequency stabilization schemes are not as mature as frequency-doubling lasers, mainly due to some limitations in the UV spectral region. Here we developed a high