ﻻ يوجد ملخص باللغة العربية
Distinct from the type of local realist inequality (known as the Collins-Gisin-Linden-Massar-Popescu or CGLMP inequality) usually used for bipartite qutrit systems, we formulate a new set of local realist inequalities for bipartite qutrits by generalizing Wigners argument that was originally formulated for the bipartite qubit singlet state. This treatment assumes existence of the overall joint probability distributions in the underlying stochastic hidden variable space for the measurement outcomes pertaining to the relevant trichotomic observables, satisfying the locality condition and yielding the measurable marginal probabilities. Such generalized Wigner inequalities (GWI) do not reduce to Bell-CHSH type inequalities by clubbing any two outcomes, and are violated by quantum mechanics (QM) for both the bipartite qutrit isotropic and singlet states using trichotomic observables defined by six-port beam splitter as well as by the spin-$1$ component observables. The efficacy of GWI is then probed in these cases by comparing the QM violation of GWI with that obtained for the CGLMP inequality. This comparison is done by incorporating white noise in the singlet and isotropic qutrit states. It is found that for the six-port beam splitter observables, QM violation of GWI is more robust than that of the CGLMP inequality for singlet qutrit states, while for isotropic qutrit states, QM violation of the CGLMP inequality is more robust. On the other hand, for the spin-$1$ component observables, QM violation of GWI is more robust for both the type of states considered.
The local and non-local contents of non-local probability distributions are studied using the approach of Elitzur, Popescu and Rohrlich [Phys. Lett. A textbf{162}, 25 (1992)]. This work focuses on distributions that can be obtained by single-copy von
In a scenario where two parties share, act on and exchange some physical resource, the assumption that the parties actions are ordered according to a definite causal structure yields constraints on the possible correlations that can be established. W
We classify biqutrit and triqutrit pure states under stochastic local operations and classical communication. By investigating the right singular vector spaces of the coefficient matrices of the states, we obtain explicitly two equivalent classes of
We construct steering inequalities which exhibit unbounded violation. The concept was to exploit the relationship between steering violation and uncertainty relation. To this end we apply mutually unbiased bases and anti-commuting observables, known
In a series of articles we have shown that all parametric-down- conversion processes, both of type-I and type-II, may be described by a positive Wigner density. These results, together with our description of how light detectors subtract the zeropoin