ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of Bipartite and Tripartite Qutrit Entanglement under SLOCC

515   0   0.0 ( 0 )
 نشر من قبل Zhi-Xi Wang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We classify biqutrit and triqutrit pure states under stochastic local operations and classical communication. By investigating the right singular vector spaces of the coefficient matrices of the states, we obtain explicitly two equivalent classes of biqutrit states and twelve equivalent classes of triqutrit states respectively.



قيم البحث

اقرأ أيضاً

197 - Xingyu Guo , Chen-Te Ma 2021
We provide an analytical tripartite-study from the generalized $R$-matrix. It provides the upper bound of the maximum violation of Mermins inequality. For a generic 2-qubit pure state, the concurrence or $R$-matrix characterizes the maximum violation of Bells inequality. Therefore, people expect that the maximum violation should be proper to quantify Quantum Entanglement. The $R$-matrix gives the maximum violation of Bells inequality. For a general 3-qubit state, we have five invariant entanglement quantities up to local unitary transformations. We show that the five invariant quantities describe the correlation in the generalized $R$-matrix. The violation of Mermins inequality is not a proper diagnosis due to the non-monotonic behavior. We then classify 3-qubit quantum states. Each classification quantifies Quantum Entanglement by the total concurrence. In the end, we relate the experiment correlators to Quantum Entanglement.
239 - D. Li , X. Li , H. Huang 2009
In Phys. Rev. A 62, 062314 (2000), D{u}r, Vidal and Cirac indicated that there are infinitely many SLOCC classes for four qubits. Verstraete, Dehaene, and Verschelde in Phys. Rev. A 65, 052112 (2002) proposed nine families of states corresponding to nine different ways of entangling four qubits. In Phys. Rev. A 75, 022318 (2007), Lamata et al. reported that there are eight true SLOCC entanglement classes of four qubits up to permutations of the qubits. In this paper, we investigate SLOCC classification of the nine families proposed by Verstraete, Dehaene and Verschelde, and distinguish 49 true SLOCC entanglement classes from them.
Self-testing refers to a method with which a classical user can certify the state and measurements of quantum systems in a device-independent way. Especially, the self-testing of entangled states is of great importance in quantum information process. A comprehensible example is that violating the CHSH inequality maximally necessarily implies the bipartite shares a singlet. One essential question in self-testing is that, when one observes a non-maximum violation, how close is the tested state to the target state (which maximally violates certain Bell inequality)? The answer to this question describes the robustness of the used self-testing criterion, which is highly important in a practical sense. Recently, J. Kaniewski predicts two analytic self-testing bounds for bipartite and tripartite systems. In this work, we experimentally investigate these two bounds with high quality two-qubit and three-qubit entanglement sources. The results show that these bounds are valid for various of entangled states we prepared, and thus, we implement robust self-testing processes which improve the previous results significantly.
Article presents general formulation of entanglement measures problem in terms of correlation function. Description of entanglement in probabilistic framework allow us to introduce new quantity which describes quantum and classical correlations. This formalism is applied to calculate bipartite and tripartite correlations in two special cases of entangled states of tripartite systems.
We investigate quantum entanglement in an analogue black hole realized in the flow of a Bose-Einstein condensate. The system is described by a three-mode Gaussian state and we construct the corresponding covariance matrix at zero and finite temperatu re. We study associated bipartite and tripartite entanglement measures and discuss their experimental observation. We identify a simple optical setup equivalent to the analogue Bose-Einstein black hole which suggests a new way of determining the Hawking temperature and grey-body factor of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا