ترغب بنشر مسار تعليمي؟ اضغط هنا

An Outbreak Vector-host Epidemic Model with Spatial Structure: The 2015 Zika Outbreak in Rio de Janeiro

441   0   0.0 ( 0 )
 نشر من قبل Glenn Webb Dr
 تاريخ النشر 2016
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: A deterministic model is developed for the spatial spread of an epidemic disease in a geographical setting. The disease is borne by vectors to susceptible hosts through criss-cross dynamics. The model is focused on an epidemic outbreak that initiates from a small number of cases in a small sub-region of the geographical setting. Methods: Partial differential equations are formulated to describe the interaction of the model compartments. Results: The partial differential equations of the model are analyzed and proven to be well-posed. The epidemic outcomes of the model are correlated to the spatially dependent parameters and initial conditions of the model. Conclusions: A version of the model is applied to the 2015-2016 Zika outbreak in the Rio de Janeiro Municipality in Brazil.



قيم البحث

اقرأ أيضاً

We calculate both the exponential and pre-factor contributions in a WKB approximation of the master equation for a stochastic SIR model with highly oscillatory dynamics. Fixing the basic parameters of the model we investigate how the outbreak distrib ution changes with the population size. We show that this distribution rapidly becomes highly non-Gaussian, acquiring large tails indicating the presence of rare, but large outbreaks, as the population is made smaller. The analytic results are found to be in excellent agreement with simulations until the systems become so small that the dynamics are dominated by fade-out of the disease.
The COVID-19 pandemic has demonstrated how disruptive emergent disease outbreaks can be and how useful epidemic models are for quantifying risks of local outbreaks. Here we develop an analytical approach to calculate the dynamics and likelihood of ou tbreaks within the canonical Susceptible-Exposed-Infected-Recovered and more general models, including COVID-19 models, with fixed population sizes. We compute the distribution of outbreak sizes including extreme events, and show that each outbreak entails a unique, depletion or boost in the pool of susceptibles and an increase or decrease in the effective recovery rate compared to the mean-field dynamics -- due to finite-size noise. Unlike extreme events occurring in long-lived metastable stochastic systems, the underlying outbreak distribution depends on a full continuum of optimal paths, each connecting two unique non-trivial fixed-points, and thus represents a novel class of extreme dynamics.
104 - Christian S. Perone 2020
This article contains a series of analyses done for the SARS-CoV-2 outbreak in Rio Grande do Sul (RS) in the south of Brazil. These analyses are focused on the high-incidence cities such as the state capital Porto Alegre and at the state level. We pr ovide methodological details and estimates for the effective reproduction number $R_t$, a joint analysis of the mobility data together with the estimated $R_t$ as well as ICU simulations and ICU LoS (length of stay) estimation for hospitalizations in Porto Alegre/RS.
We present Coronavirus disease 2019 (COVID-19) statistics in China dataset: daily statistics of the COVID-19 outbreak in China at the city/county level. For each city/country, we include the six most important numbers for epidemic research: daily new infections, accumulated infections, daily new recoveries, accumulated recoveries, daily new deaths, and accumulated deaths. We cross validate the dataset and the estimate error rate is about 0.04%. We then give several examples to show how to trace the spreading in particular cities or provinces, and also contrast the development of COVID-19 in all cities in China at the early, middle and late stages. We hope this dataset can help researchers around the world better understand the spreading dynamics of COVID-19 at a regional level, to inform intervention and mitigation strategies for policymakers.
The Ebola virus in West Africa has infected almost 30,000 and killed over 11,000 people. Recent models of Ebola Virus Disease (EVD) have often made assumptions about how the disease spreads, such as uniform transmissibility and homogeneous mixing wit hin a population. In this paper, we test whether these assumptions are necessarily correct, and offer simple solutions that may improve disease model accuracy. First, we use data and models of West African migration to show that EVD does not homogeneously mix, but spreads in a predictable manner. Next, we estimate the initial growth rate of EVD within country administrative divisions and find that it significantly decreases with population density. Finally, we test whether EVD strains have uniform transmissibility through a novel statistical test, and find that certain strains appear more often than expected by chance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا