ﻻ يوجد ملخص باللغة العربية
Background: A deterministic model is developed for the spatial spread of an epidemic disease in a geographical setting. The disease is borne by vectors to susceptible hosts through criss-cross dynamics. The model is focused on an epidemic outbreak that initiates from a small number of cases in a small sub-region of the geographical setting. Methods: Partial differential equations are formulated to describe the interaction of the model compartments. Results: The partial differential equations of the model are analyzed and proven to be well-posed. The epidemic outcomes of the model are correlated to the spatially dependent parameters and initial conditions of the model. Conclusions: A version of the model is applied to the 2015-2016 Zika outbreak in the Rio de Janeiro Municipality in Brazil.
We calculate both the exponential and pre-factor contributions in a WKB approximation of the master equation for a stochastic SIR model with highly oscillatory dynamics. Fixing the basic parameters of the model we investigate how the outbreak distrib
The COVID-19 pandemic has demonstrated how disruptive emergent disease outbreaks can be and how useful epidemic models are for quantifying risks of local outbreaks. Here we develop an analytical approach to calculate the dynamics and likelihood of ou
This article contains a series of analyses done for the SARS-CoV-2 outbreak in Rio Grande do Sul (RS) in the south of Brazil. These analyses are focused on the high-incidence cities such as the state capital Porto Alegre and at the state level. We pr
We present Coronavirus disease 2019 (COVID-19) statistics in China dataset: daily statistics of the COVID-19 outbreak in China at the city/county level. For each city/country, we include the six most important numbers for epidemic research: daily new
The Ebola virus in West Africa has infected almost 30,000 and killed over 11,000 people. Recent models of Ebola Virus Disease (EVD) have often made assumptions about how the disease spreads, such as uniform transmissibility and homogeneous mixing wit