ﻻ يوجد ملخص باللغة العربية
Signed networks have long been used to represent social relations of amity (+) and enmity (-) between individuals. Group of individuals who are cyclically connected are said to be balanced if the number of negative edges in the cycle is even and unbalanced otherwise. In its earliest and most natural formulation, the balance of a social network was thus defined from its simple cycles, cycles which do not visit any vertex more than once. Because of the inherent difficulty associated with finding such cycles on very large networks, social balance has since then been studied via other means. In this article we present the balance as measured from the simple cycles and primitive orbits of social networks. We specifically provide two measures of balance: the proportion $R_ell$ of negative simple cycles of length $ell$ for each $ellleq 20$ which generalises the triangle index, and a ratio $K_ell$ which extends the relative signed clustering coefficient introduced by Kunegis. To do so, we use a Monte Carlo implementation of a novel exact formula for counting the simple cycles on any weighted directed graph. Our method is free from the double-counting problem affecting previous cycle-based approaches, does not require edge-reciprocity of the underlying network, provides a gray-scale measure of balance for each cycle length separately and is sufficiently tractable that it can be implemented on a standard desktop computer. We observe that social networks exhibit strong inter-edge correlations favouring balanced situations and we determine the corresponding correlation length $xi$. For longer simple cycles, $R_ell$ undergoes a sharp transition to values expected from an uncorrelated model. This transition is absent from synthetic random networks, strongly suggesting that it carries a sociological meaning warranting further research.
Structural balance theory has been developed in sociology and psychology to explain how interacting agents, e.g., countries, political parties, opinionated individuals, with mixed trust and mistrust relationships evolve into polarized camps. Recent r
Existing socio-psychological studies suggest that users of a social network form their opinions relying on the opinions of their neighbors. According to DeGroot opinion formation model, one value of particular importance is the asymptotic consensus v
Influence maximization (IM) aims at maximizing the spread of influence by offering discounts to influential users (called seeding). In many applications, due to users privacy concern, overwhelming network scale etc., it is hard to target any user in
Online social networks are often subject to influence campaigns by malicious actors through the use of automated accounts known as bots. We consider the problem of detecting bots in online social networks and assessing their impact on the opinions of
Analysis of opinion dynamics in social networks plays an important role in todays life. For applications such as predicting users political preference, it is particularly important to be able to analyze the dynamics of competing opinions. While obser