ترغب بنشر مسار تعليمي؟ اضغط هنا

Deciding Maxmin Reachability in Half-Blind Stochastic Games

76   0   0.0 ( 0 )
 نشر من قبل Edon Kelmendi
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Edon Kelmendi




اسأل ChatGPT حول البحث

Two-player, turn-based, stochastic games with reachability conditions are considered, where the maximizer has no information (he is blind) and is restricted to deterministic strategies whereas the minimizer is perfectly informed. We ask the question of whether the game has maxmin 1, in other words we ask whether for all $epsilon>0$ there exists a deterministic strategy for the (blind) maximizer such that against all the strategies of the minimizer, it is possible to reach the set of final states with probability larger than $1-epsilon$. This problem is undecidable in general, but we define a class of games, called leaktight half-blind games where the problem becomes decidable. We also show that mixed strategies in general are stronger for both players and that optimal strategies for the minimizer might require infinite-memory.



قيم البحث

اقرأ أيضاً

Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players, Player Min and Player Max, by moving a token along the states of the graph to form an infinite run. The goal of Player Min is to minimize the limit average weight of the run, while the goal of the Player Max is the opposite. Brenguier, Cassez, and Raskin recently studied a variation of these games and showed that mean-payoff games are undecidable for timed automata with five or more clocks. We refine this result by proving the undecidability of mean-payoff games with three clocks. On a positive side, we show the decidability of mean-payoff games on one-clock timed automata with binary price-rates. A key contribution of this paper is the application of dynamic programming based proof techniques applied in the context of average reward optimization on an uncountable state and action space.
We study turn-based stochastic zero-sum games with lexicographic preferences over reachability and safety objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both random ness as well as angelic and demonic non-determinism. Lexicographic order allows to consider multiple objectives with a strict preference order over the satisfaction of the objectives. To the best of our knowledge, stochastic games with lexicographic objectives have not been studied before. We establish determinacy of such games and present strategy and computational complexity results. For strategy complexity, we show that lexicographically optimal strategies exist that are deterministic and memory is only required to remember the already satisfied and violated objectives. For a constant number of objectives, we show that the relevant decision problem is in NP $cap$ coNP, matching the current known bound for single objectives; and in general the decision problem is PSPACE-hard and can be solved in NEXPTIME $cap$ coNEXPTIME. We present an algorithm that computes the lexicographically optimal strategies via a reduction to computation of optimal strategies in a sequence of single-objectives games. We have implemented our algorithm and report experimental results on various case studies.
The window mechanism was introduced by Chatterjee et al. to reinforce mean-payoff and total-payoff objectives with time bounds in two-player turn-based games on graphs. It has since proved useful in a variety of settings, including parity objectives in games and both mean-payoff and parity objectives in Markov decision processes. We study window parity objectives in timed automata and timed games: given a bound on the window size, a path satisfies such an objective if, in all states along the path, we see a sufficiently small window in which the smallest priority is even. We show that checking that all time-divergent paths of a timed automaton satisfy such a window parity objective can be done in polynomial space, and that the corresponding timed games can be solved in exponential time. This matches the complexity class of timed parity games, while adding the ability to reason about time bounds. We also consider multi-dimensional objectives and show that the complexity class does not increase. To the best of our knowledge, this is the first study of the window mechanism in a real-time setting.
109 - Loic Helouet 2019
We study games with reachability objectives under energy constraints. We first prove that under strict energy constraints (either only lower-bound constraint or interval constraint), those games are LOGSPACE-equivalent to energy games with the same e nergy constraints but without reachability objective (i.e., for infinite runs). We then consider two kinds of relaxations of the upper-bound constraints (while keeping the lower-bound constraint strict): in the first one, called weak upper bound, the upper bound is absorbing, in the sense that it allows receiving more energy when the upper bound is already reached, but the extra energy will not be stored; in the second one, we allow for temporary violations of the upper bound, imposing limits on the number or on the amount of violations. We prove that when considering weak upper bound, reachability objectives require memory, but can still be solved in polynomial-time for one-player arenas; we prove that they are in co-NP in the two-player setting. Allowing for bounded violations makes the problem PSPACE-complete for one-player arenas and EXPTIME-complete for two players.
Games on graphs provide a natural and powerful model for reactive systems. In this paper, we consider generalized reachability objectives, defined as conjunctions of reachability objectives. We first prove that deciding the winner in such games is $P SPACE$-complete, although it is fixed-parameter tractable with the number of reachability objectives as parameter. Moreover, we consider the memory requirements for both players and give matching upper and lower bounds on the size of winning strategies. In order to allow more efficient algorithms, we consider subclasses of generalized reachability games. We show that bounding the size of the reachability sets gives two natural subclasses where deciding the winner can be done efficiently.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا