ترغب بنشر مسار تعليمي؟ اضغط هنا

Reachability Games with Relaxed Energy Constraints

110   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Loic Helouet




اسأل ChatGPT حول البحث

We study games with reachability objectives under energy constraints. We first prove that under strict energy constraints (either only lower-bound constraint or interval constraint), those games are LOGSPACE-equivalent to energy games with the same energy constraints but without reachability objective (i.e., for infinite runs). We then consider two kinds of relaxations of the upper-bound constraints (while keeping the lower-bound constraint strict): in the first one, called weak upper bound, the upper bound is absorbing, in the sense that it allows receiving more energy when the upper bound is already reached, but the extra energy will not be stored; in the second one, we allow for temporary violations of the upper bound, imposing limits on the number or on the amount of violations. We prove that when considering weak upper bound, reachability objectives require memory, but can still be solved in polynomial-time for one-player arenas; we prove that they are in co-NP in the two-player setting. Allowing for bounded violations makes the problem PSPACE-complete for one-player arenas and EXPTIME-complete for two players.



قيم البحث

اقرأ أيضاً

We study turn-based stochastic zero-sum games with lexicographic preferences over reachability and safety objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both random ness as well as angelic and demonic non-determinism. Lexicographic order allows to consider multiple objectives with a strict preference order over the satisfaction of the objectives. To the best of our knowledge, stochastic games with lexicographic objectives have not been studied before. We establish determinacy of such games and present strategy and computational complexity results. For strategy complexity, we show that lexicographically optimal strategies exist that are deterministic and memory is only required to remember the already satisfied and violated objectives. For a constant number of objectives, we show that the relevant decision problem is in NP $cap$ coNP, matching the current known bound for single objectives; and in general the decision problem is PSPACE-hard and can be solved in NEXPTIME $cap$ coNEXPTIME. We present an algorithm that computes the lexicographically optimal strategies via a reduction to computation of optimal strategies in a sequence of single-objectives games. We have implemented our algorithm and report experimental results on various case studies.
75 - Edon Kelmendi 2016
Two-player, turn-based, stochastic games with reachability conditions are considered, where the maximizer has no information (he is blind) and is restricted to deterministic strategies whereas the minimizer is perfectly informed. We ask the question of whether the game has maxmin 1, in other words we ask whether for all $epsilon>0$ there exists a deterministic strategy for the (blind) maximizer such that against all the strategies of the minimizer, it is possible to reach the set of final states with probability larger than $1-epsilon$. This problem is undecidable in general, but we define a class of games, called leaktight half-blind games where the problem becomes decidable. We also show that mixed strategies in general are stronger for both players and that optimal strategies for the minimizer might require infinite-memory.
We prove two determinacy and decidability results about two-players stochastic reachability games with partial observation on both sides and finitely many states, signals and actions.
84 - Paulin Jacquot 2019
Aggregative games have many industrial applications, and computing an equilibrium in those games is challenging when the number of players is large. In the framework of atomic aggregative games with coupling constraints, we show that variational Nash equilibria of a large aggregative game can be approximated by a Wardrop equilibrium of an auxiliary population game of smaller dimension. Each population of this auxiliary game corresponds to a group of atomic players of the initial large game. This approach enables an efficient computation of an approximated equilibrium, as the variational inequality characterizing the Wardrop equilibrium is of smaller dimension than the initial one. This is illustrated on an example in the smart grid context.
Coalitional games serve the purpose of modeling payoff distribution problems in scenarios where agents can collaborate by forming coalitions in order to obtain higher worths than by acting in isolation. In the classical Transferable Utility (TU) sett ing, coalition worths can be freely distributed amongst agents. However, in several application scenarios, this is not the case and the Non-Transferable Utility setting (NTU) must be considered, where additional application-oriented constraints are imposed on the possible worth distributions. In this paper, an approach to define NTU games is proposed which is based on describing allowed distributions via a set of mixed-integer linear constraints applied to an underlying TU game. It is shown that such games allow non-transferable conditions on worth distributions to be specified in a natural and succinct way. The properties and the relationships among the most prominent solution concepts for NTU games that hold when they are applied on (mixed-integer) constrained games are investigated. Finally, a thorough analysis is carried out to assess the impact of issuing constraints on the computational complexity of some of these solution concepts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا