ﻻ يوجد ملخص باللغة العربية
The window mechanism was introduced by Chatterjee et al. to reinforce mean-payoff and total-payoff objectives with time bounds in two-player turn-based games on graphs. It has since proved useful in a variety of settings, including parity objectives in games and both mean-payoff and parity objectives in Markov decision processes. We study window parity objectives in timed automata and timed games: given a bound on the window size, a path satisfies such an objective if, in all states along the path, we see a sufficiently small window in which the smallest priority is even. We show that checking that all time-divergent paths of a timed automaton satisfy such a window parity objective can be done in polynomial space, and that the corresponding timed games can be solved in exponential time. This matches the complexity class of timed parity games, while adding the ability to reason about time bounds. We also consider multi-dimensional objectives and show that the complexity class does not increase. To the best of our knowledge, this is the first study of the window mechanism in a real-time setting.
Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players, Player Min and Player Max, by moving a token along the states of the graph to form an infinite run. The goal
We study a class of games, in which the adversary (attacker) is to satisfy a complex mission specified in linear temporal logic, and the defender is to prevent the adversary from achieving its goal. A deceptive defender can allocate decoys, in additi
Zielonkas classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity is exponential, while currently the state-of-the-art algorithms have quasipolynomial comple
An average-time game is played on the infinite graph of configurations of a finite timed automaton. The two players, Min and Max, construct an infinite run of the automaton by taking turns to perform a timed transition. Player Min wants to minimise t
The recent breakthrough paper by Calude et al. has given the first algorithm for solving parity games in quasi-polynomial time, where previously the best algorithms were mildly subexponential. We devise an alternative quasi-polynomial time algorithm