ﻻ يوجد ملخص باللغة العربية
Scale functions play a central role in the fluctuation theory of spectrally negative Levy processes and often appear in the context of martingale relations. These relations are often complicated to establish requiring excursion theory in favour of It^o calculus. The reason for the latter is that standard It^o calculus is only applicable to functions with a sufficient degree of smoothness and knowledge of the precise degree of smoothness of scale functions is seemingly incomplete. The aim of this article is to offer new results concerning properties of scale functions in relation to the smoothness of the underlying Levy measure. We place particular emphasis on spectrally negative Levy processes with a Gaussian component and processes of bounded variation. An additional motivation is the very intimate relation of scale functions to renewal functions of subordinators. The results obtained for scale functions have direct implications offering new results concerning the smoothness of such renewal functions for which there seems to be very little existing literature on this topic.
In this paper, we derive the joint Laplace transforms of occupation times until its last passage times as well as its positions. Motivated by Baurdoux [2], the last times before an independent exponential variable are studied. By applying dual argume
This paper explicitly computes the transition densities of a spectrally negative stable process with index greater than one, reflected at its infimum. First we derive the forward equation using the theory of sun-dual semigroups. The resulting forward
We revisit the classical singular control problem of minimizing running and controlling costs. The problem arises in inventory control, as well as in healthcare management and mathematical finance. Existing studies have shown the optimality of a barr
We extend the concept of packing dimension profiles, due to Falconer and Howroyd (1997) and Howroyd (2001), and use our extension in order to determine the packing dimension of an arbitrary image of a general Levy process.
We investigate the algebra of repeated integrals of semimartingales. We prove that a minimal family of semimartingales generates a quasi-shuffle algebra. In essence, to fulfill the minimality criterion, first, the family must be a minimal generator o