ترغب بنشر مسار تعليمي؟ اضغط هنا

A Large deviation principle for last passage times in an asymmetric Bernoulli potential

65   0   0.0 ( 0 )
 نشر من قبل Nicos Georgiou
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove a large deviation principle and give an expression for the rate function, for the last passage time in a Bernoulli environment. The model is exactly solvable and its invariant version satisfies a Burke-type property. Finally, we compute explicit limiting logarithmic moment generating functions for both the classical and the invariant models. The shape function of this model exhibits a flat edge in certain directions, and we also discuss the rate function and limiting log-moment generating functions in those directions.



قيم البحث

اقرأ أيضاً

We study the sequence alignment problem and its independent version, the discrete Hammersley process with an exploration penalty. We obtain rigorous upper bounds for the number of optimality regions in both models near the soft edge. At zero penalty the independent model becomes an exactly solvable model and we identify cases for which the law of the last passage time converges to a Tracy-Widom law.
We initiate a study of large deviations for block model random graphs in the dense regime. Following Chatterjee-Varadhan(2011), we establish an LDP for dense block models, viewed as random graphons. As an application of our result, we study upper tai l large deviations for homomorphism densities of regular graphs. We identify the existence of a symmetric phase, where the graph, conditioned on the rare event, looks like a block model with the same block sizes as the generating graphon. In specific examples, we also identify the existence of a symmetry breaking regime, where the conditional structure is not a block model with compatible dimensions. This identifies a reentrant phase transition phenomenon for this problem---analogous to one established for Erdos-Renyi random graphs (Chatterjee-Dey(2010), Chatterjee-Varadhan(2011)). Finally, extending the analysis of Lubetzky-Zhao(2015), we identify the precise boundary between the symmetry and symmetry breaking regime for homomorphism densities of regular graphs and the operator norm on Erdos-Renyi bipartite graphs.
92 - Bo Li , Chunhao Cai 2016
In this paper, we derive the joint Laplace transforms of occupation times until its last passage times as well as its positions. Motivated by Baurdoux [2], the last times before an independent exponential variable are studied. By applying dual argume nts, explicit formulas are derived in terms of new analytical identities from Loeffen et al. [12].
In this paper we prove a duality relation between coalescence times and exit points in last-passage percolation models with exponential weights. As a consequence, we get lower bounds for coalescence times with scaling exponent 3/2, and we relate its distribution with variational problems involving the Brownian motion process and the Airy process.
76 - Wei Hong , Shihu Li , Wei Liu 2021
This paper is devoted to investigating the Freidlin-Wentzells large deviation principle for a class of McKean-Vlasov quasilinear SPDEs perturbed by small multiplicative noise. We adopt the variational framework and the modified weak convergence crite ria to prove the Laplace principle for McKean-Vlasov type SPDEs, which is equivalent to the large deviation principle. Moreover, we do not assume any compactness condition of embedding in the Gelfand triple to handle both the cases of bounded and unbounded domains in applications. The main results can be applied to various McKean-Vlasov type SPDEs such as distribution dependent stochastic porous media type equations and stochastic p-Laplace type equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا