ﻻ يوجد ملخص باللغة العربية
Previously, we proposed that the polarization and capacitive charge in ce{CH3NH3PbI3} screens the external electric field that hinders charge transport. We argue here that this screening effect is in significant part responsible for the power conversion characteristics and hysteresis in ce{CH3NH3PbI3} photovoltaic cells. In this paper, we implement capacitive charge and polarization charge into the numerical model that we have developed for perovskite solar cells. Fields induced by these two charges screen the applied hindering field, promote charge transport, and improve solar cells performance, especially in solar cells with short diffusion lengths. This is the reason why perovskite solar cells made from simple fabrication methods can achieve high performance. More importantly, with relaxations of capacitive charge and polarization charge, we quantitatively reproduce experimental anomalous hysteresis J-V curves. This reveals that both polarization relaxation and ions relaxation could contribute to anomalous hysteresis in perovskite solar cells.
Increasing evidence suggests that the presence of mobile ions in perovskite solar cells can cause a current-voltage curve hysteresis. Steady state and transient current-voltage characteristics of a planar metal halide CH$_3$NH$_3$PbI$_3$ perovskite s
We explore the degradation behaviour under continuous illumination and direct oxygen exposure of inverted unencapsulated formamidinium(FA)0.83Cs0.17Pb(I0.8Br0.2)3, CH3NH3PbI3, and CH3NH3PbI3-xClx perovskite solar cells. We continuously test the devic
Hybrid organic-inorganic halide perovskite solar cells have emerged as leading candidates for third-generation photovoltaic technology. Despite the rapid improvement in power conversion efficiency (PCE) for perovskite solar cells in recent years, the
As the race towards higher efficiency for inorganic/organic hybrid perovskite solar cells (PSCs) is becoming highly competitive, a design scheme to maximize carrier transport towards higher power efficiency has been urgently demanded. Here, we unrave
The performance of organometallic perovskite solar cells has rapidly surpassed that of both conventional dye-sensitised and organic photovoltaics. High power conversion efficiency can be realised in both mesoporous and thin-film device architectures.