ﻻ يوجد ملخص باللغة العربية
Increasing evidence suggests that the presence of mobile ions in perovskite solar cells can cause a current-voltage curve hysteresis. Steady state and transient current-voltage characteristics of a planar metal halide CH$_3$NH$_3$PbI$_3$ perovskite solar cell are analysed with a drift-diffusion model that accounts for both charge transport and ion vacancy motion. The high ion vacancy density within the perovskite layer gives rise to narrow Debye layers (typical width $sim$2nm), adjacent to the interfaces with the transport layers, over which large drops in the electric potential occur and in which significant charge is stored. Large disparities between (I) the width of the Debye layers and that of the perovskite layer ($sim$600nm) and (II) the ion vacancy density and the charge carrier densities motivate an asymptotic approach to solving the model, while the stiffness of the equations renders standard solution methods unreliable. We derive a simplified surface polarisation model in which the slow ion dynamic are replaced by interfacial (nonlinear) capacitances at the perovskite interfaces. Favourable comparison is made between the results of the asymptotic approach and numerical solutions for a realistic cell over a wide range of operating conditions of practical interest.
We explore the degradation behaviour under continuous illumination and direct oxygen exposure of inverted unencapsulated formamidinium(FA)0.83Cs0.17Pb(I0.8Br0.2)3, CH3NH3PbI3, and CH3NH3PbI3-xClx perovskite solar cells. We continuously test the devic
Perovskite-silicon tandem solar cells are currently one of the most investigated concepts to overcome the theoretical limit for the power conversion efficiency of silicon solar cells. For monolithic tandem solar cells the available light must be dist
In this perspective, we explore the insights into the device physics of perovskite solar cells gained from modeling and simulation of these devices. We discuss a range of factors that influence the modeling of perovskite solar cells, including the ro
Hybrid organic-inorganic halide perovskite solar cells have emerged as leading candidates for third-generation photovoltaic technology. Despite the rapid improvement in power conversion efficiency (PCE) for perovskite solar cells in recent years, the
Among the n-type metal oxide materials used in the planar perovskite solar cells, zinc oxide (ZnO) is a promising candidate to replace titanium dioxide (TiO2) due to its relatively high electron mobility, high transparency, and versatile nanostructur