ﻻ يوجد ملخص باللغة العربية
The determination of galaxy redshifts in James Webb Space Telescope (JWST)s blank-field surveys will mostly rely on photometric estimates, based on the data provided by JWSTs Near-Infrared Camera (NIRCam) at 0.6-5.0 {mu}m and Mid Infrared Instrument (MIRI) at {lambda}>5.0 {mu}m. In this work we analyse the impact of choosing different combinations of NIRCam and MIRI broad-band filters (F070W to F770W), as well as having ancillary data at {lambda}<0.6 {mu}m, on the derived photometric redshifts (zphot) of a total of 5921 real and simulated galaxies, with known input redshifts z=0-10. We found that observations at {lambda}<0.6 {mu}m are necessary to control the contamination of high-z samples by low-z interlopers. Adding MIRI (F560W and F770W) photometry to the NIRCam data mitigates the absence of ancillary observations at {lambda}<0.6 {mu}m and improves the redshift estimation. At z=7-10, accurate zphot can be obtained with the NIRCam broad bands alone when S/N>=10, but the zphot quality significantly degrades at S/N<=5. Adding MIRI photometry with one magnitude brighter depth than the NIRCam depth allows for a redshift recovery of 83-99%, depending on SED type, and its effect is particularly noteworthy for galaxies with nebular emission. The vast majority of NIRCam galaxies with [F150W]=29 AB mag at z=7-10 will be detected with MIRI at [F560W, F770W]<28 mag if these sources are at least mildly evolved or have spectra with emission lines boosting the mid-infrared fluxes.
In the next years, several cosmological surveys will rely on imaging data to estimate the redshift of galaxies, using traditional filter systems with 4-5 optical broad bands; narrower filters improve the spectral resolution, but strongly reduce the t
In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of about 25,000 galaxies from the second data release of
We present results of broad band photometric reverberation mapping (RM) to measure the radius of the broad line region, and subsequently the black hole mass (M$_{rm BH}$), in the nearby, low luminosity active galactic nuclei (AGN) NGC 4395. Using the
We present results of using individual galaxies redshift probability information derived from a photometric redshift (photo-z) algorithm, SPIDERz, to identify potential catastrophic outliers in photometric redshift determinations. By using two test d
Supernova (SN) classification and redshift estimation using photometric data only have become very important for the Large Synoptic Survey Telescope (LSST), given the large number of SNe that LSST will observe and the impossibility of spectroscopical