ﻻ يوجد ملخص باللغة العربية
We present results of using individual galaxies redshift probability information derived from a photometric redshift (photo-z) algorithm, SPIDERz, to identify potential catastrophic outliers in photometric redshift determinations. By using two test data sets comprised of COSMOS multi-band photometry spanning a wide redshift range (0<z<4) matched with reliable spectroscopic or other redshift determinations we explore the efficacy of a novel method to flag potential catastrophic outliers in an analysis which relies on accurate photometric redshifts. SPIDERz is a custom support vector machine classification algorithm for photo-z analysis that naturally outputs a distribution of redshift probability information for each galaxy in addition to a discrete most probable photo-z value. By applying an analytic technique with flagging criteria to identify the presence of probability distribution features characteristic of catastrophic outlier photo-z estimates, such as multiple redshift probability peaks separated by substantial redshift distances, we can flag potential catastrophic outliers in photo-z determinations. We find that our proposed method can correctly flag large fractions (>50%) of the catastrophic outlier galaxies, while only flagging a small fraction (<5%) of the total non-outlier galaxies, depending on parameter choices. The fraction of non-outlier galaxies flagged varies significantly with redshift and magnitude, however. We examine the performance of this strategy in photo-z determinations using a range of flagging parameter values. These results could potentially be useful for utilization of photometric redshifts in future large scale surveys where catastrophic outliers are particularly detrimental to the science goals.
We present results of using individual galaxies probability distribution over redshift as a method of identifying potential catastrophic outliers in empirical photometric redshift estimation. In the course of developing this approach we develop a met
We demonstrate that highly accurate joint redshift-stellar mass probability distribution functions (PDFs) can be obtained using the Random Forest (RF) machine learning (ML) algorithm, even with few photometric bands available. As an example, we use t
MiniJPAS is a ~1 deg^2 imaging survey of the AEGIS field in 60 bands, performed to demonstrate the scientific potential of the upcoming JPAS survey. Full coverage of the 3800-9100 AA range with 54 narrow and 6 broad optical filters allow for extremel
We present redshift probability distributions for galaxies in the SDSS DR8 imaging data. We used the nearest-neighbor weighting algorithm presented in Lima et al. 2008 and Cunha et al. 2009 to derive the ensemble redshift distribution N(z), and indiv
Obtaining accurate photometric redshift estimations is an important aspect of cosmology, remaining a prerequisite of many analyses. In creating novel methods to produce redshift estimations, there has been a shift towards using machine learning techn