ﻻ يوجد ملخص باللغة العربية
In the next years, several cosmological surveys will rely on imaging data to estimate the redshift of galaxies, using traditional filter systems with 4-5 optical broad bands; narrower filters improve the spectral resolution, but strongly reduce the total system throughput. We explore how photometric redshift performance depends on the number of filters n_f, characterizing the survey depth through the fraction of galaxies with unambiguous redshift estimates. For a combination of total exposure time and telescope imaging area of 270 hrs m^2, 4-5 filter systems perform significantly worse, both in completeness depth and precision, than systems with n_f >= 8 filters. Our results suggest that for low n_f, the color-redshift degeneracies overwhelm the improvements in photometric depth, and that even at higher n_f, the effective photometric redshift depth decreases much more slowly with filter width than naively expected from the reduction in S/N. Adding near-IR observations improves the performance of low n_f systems, but still the system which maximizes the photometric redshift completeness is formed by 9 filters with logarithmically increasing bandwidth (constant resolution) and half-band overlap, reaching ~0.7 mag deeper, with 10% better redshift precision, than 4-5 filter systems. A system with 20 constant-width, non-overlapping filters reaches only ~0.1 mag shallower than 4-5 filter systems, but has a precision almost 3 times better, dz = 0.014(1+z) vs. dz = 0.042(1+z). We briefly discuss a practical implementation of such a photometric system: the ALHAMBRA survey.
We propose a novel type filter for multicolor imaging to improve on the photometric redshift estimation of galaxies. An extra filter - specific to a certain photometric system - may be utilized with high efficiency. We present a case study of the Hub
The determination of galaxy redshifts in James Webb Space Telescope (JWST)s blank-field surveys will mostly rely on photometric estimates, based on the data provided by JWSTs Near-Infrared Camera (NIRCam) at 0.6-5.0 {mu}m and Mid Infrared Instrument
In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of about 25,000 galaxies from the second data release of
Accurate photometric redshifts are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Sim
State estimation is critical to control systems, especially when the states cannot be directly measured. This paper presents an approximate optimal filter, which enables to use policy iteration technique to obtain the steady-state gain in linear Gaus