ﻻ يوجد ملخص باللغة العربية
Many standard conversion matrices between coefficients in classical orthogonal polynomial expansions can be decomposed using diagonally-scaled Hadamard products involving Toeplitz and Hankel matrices. This allows us to derive $smash{mathcal{O}(N(log N)^2)}$ algorithms, based on the fast Fourier transform, for converting coefficients of a degree $N$ polynomial in one polynomial basis to coefficients in another. Numerical results show that this approach is competitive with state-of-the-art techniques, requires no precomputational cost, can be implemented in a handful of lines of code, and is easily adapted to extended precision arithmetic.
Numerical integration of the stiffness matrix in higher order finite element (FE) methods is recognized as one of the heaviest computational tasks in a FE solver. The problem becomes even more relevant when computing the Gram matrix in the algorithm
We study the asymptotics in n for n-dimensional Toeplitz determinants whose symbols possess Fisher-Hartwig singularities on a smooth background. We prove the general non-degenerate asymptotic behavior as conjectured by Basor and Tracy. We also obtain
We study means of geometric type of quasi-Toeplitz matrices, that are semi-infinite matrices $A=(a_{i,j})_{i,j=1,2,ldots}$ of the form $A=T(a)+E$, where $E$ represents a compact operator, and $T(a)$ is a semi-infinite Toeplitz matrix associated with
We investigate the problem of approximating the matrix function $f(A)$ by $r(A)$, with $f$ a Markov function, $r$ a rational interpolant of $f$, and $A$ a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interp
Circulant preconditioners for functions of matrices have been recently of interest. In particular, several authors proposed the use of the optimal circulant preconditioners as well as the superoptimal circulant preconditioners in this context and num