ﻻ يوجد ملخص باللغة العربية
Numerical integration of the stiffness matrix in higher order finite element (FE) methods is recognized as one of the heaviest computational tasks in a FE solver. The problem becomes even more relevant when computing the Gram matrix in the algorithm of the Discontinuous Petrov Galerkin (DPG) FE methodology. Making use of 3D tensor-product shape functions, and the concept of sum factorization, known from standard high order FE and spectral methods, here we take advantage of this idea for the entire exact sequence of FE spaces defined on the hexahedron. The key piece to the presented algorithms is the exact sequence for the one-dimensional element, and use of hierarchical shape functions. Consistent with existing results, the presented algorithms for the integration of $H^1$, $H(text{curl})$, $H(text{div})$, and $L^2$ inner products, have the $O(p^7)$ computational complexity. Additionally, a modified version of the algorithms is proposed when the element map can be simplified, resulting in the reduced $O(p^6)$ complexity. Use of Legendre polynomials for shape functions is critical in this implementation. Computational experiments performed with $H^1$, $H(text{div})$ and $H(text{curl})$ test shape functions show good correspondence with the expected rates.
Many standard conversion matrices between coefficients in classical orthogonal polynomial expansions can be decomposed using diagonally-scaled Hadamard products involving Toeplitz and Hankel matrices. This allows us to derive $smash{mathcal{O}(N(log
We introduce a cousin of the DPG method - the DPG* method - discuss their relationship and compare the two methods through numerical experiments.
This article introduces the DPG-star (from now on, denoted DPG$^*$) finite element method. It is a method that is in some sense dual to the discontinuous Petrov-Galerkin (DPG) method. The DPG methodology can be viewed as a means to solve an overdeter
We develop two fast algorithms for Hessenberg reduction of a structured matrix $A = D + UV^H$ where $D$ is a real or unitary $n times n$ diagonal matrix and $U, V inmathbb{C}^{n times k}$. The proposed algorithm for the real case exploits a two--stag
We analyze a non-conforming DPG method with discontinuous trace approximation for the Poisson problem in two and three space dimensions. We show its well-posedness and quasi-optimal convergence in the principal unknown. Numerical experiments confirming the theory have been presented previously.