ﻻ يوجد ملخص باللغة العربية
We study means of geometric type of quasi-Toeplitz matrices, that are semi-infinite matrices $A=(a_{i,j})_{i,j=1,2,ldots}$ of the form $A=T(a)+E$, where $E$ represents a compact operator, and $T(a)$ is a semi-infinite Toeplitz matrix associated with the function $a$, with Fourier series $sum_{ell=-infty}^{infty} a_ell e^{mathfrak i ell t}$, in the sense that $(T(a))_{i,j}=a_{j-i}$. If $a$ is rv and essentially bounded, then these matrices represent bounded self-adjoint operators on $ell^2$. We consider the case where $a$ is a continuous function, where quasi-Toeplitz matrices coincide with a classical Toeplitz algebra, and the case where $a$ is in the Wiener algebra, that is, has absolutely convergent Fourier series. We prove that if $a_1,ldots,a_p$ are continuous and positive functions, or are in the Wiener algebra with some further conditions, then means of geometric type, such as the ALM, the NBMP and the Karcher mean of quasi-Toeplitz positive definite matrices associated with $a_1,ldots,a_p$, are quasi-Toeplitz matrices associated with the geometric mean $(a_1cdots a_p)^{1/p}$, which differ only by the compact correction. We show by numerical tests that these operator means can be practically approximated.
We investigate the problem of approximating the matrix function $f(A)$ by $r(A)$, with $f$ a Markov function, $r$ a rational interpolant of $f$, and $A$ a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interp
Circulant preconditioners for functions of matrices have been recently of interest. In particular, several authors proposed the use of the optimal circulant preconditioners as well as the superoptimal circulant preconditioners in this context and num
We propose several circulant preconditioners for systems defined by some functions $g$ of Toeplitz matrices $A_n$. In this paper we are interested in solving $g(A_n)mathbf{x}=mathbf{b}$ by the preconditioned conjugate method or the preconditioned min
Many standard conversion matrices between coefficients in classical orthogonal polynomial expansions can be decomposed using diagonally-scaled Hadamard products involving Toeplitz and Hankel matrices. This allows us to derive $smash{mathcal{O}(N(log
The sensitivity of eigenvalues of structured matrices under general or structured perturbations of the matrix entries has been thoroughly studied in the literature. Error bounds are available and the pseudospectrum can be computed to gain insight. Fe