ﻻ يوجد ملخص باللغة العربية
In this work, we present a comparative study of the accuracy provided by the Wang-Landau sampling and the Broad Histogram method to estimate de density of states of the two dimensional Ising ferromagnet. The microcanonical averages used to describe the thermodynamic behaviour and to use the Broad Histogram method were obtained using the single spin-flip Wang-Landau sampling, attempting to convergence issues and accuracy improvements. We compare the results provided by both techniques with the exact ones for thermodynamic properties and critical exponents. Our results, within the Wang-Landau sampling, reveal that the Broad Histogram approach provides a better description of the density of states for all cases analysed.
Monte Carlo simulations using Wang-Landau sampling are performed to study three-dimensional chains of homopolymers on a lattice. We confirm the accuracy of the method by calculating the thermodynamic properties of this system. Our results are in good
The Wang-Landau method is used to study the magnetic properties of the giant paramagnetic molecule Mo_72Fe_30 in which 30 Fe3+ ions are coupled via antiferromagnetic exchange. The two-dimensional density of states g(E,M) in energy and magnetization s
The diagrammatic Monte Carlo (Diag-MC) method is a numerical technique which samples the entire diagrammatic series of the Greens function in quantum many-body systems. In this work, we incorporate the flat histogram principle in the diagrammatic Mon
We study the performance of Monte Carlo simulations that sample a broad histogram in energy by determining the mean first-passage time to span the entire energy space of d-dimensional ferromagnetic Ising/Potts models. We first show that flat-histogra
We propose a strategy to achieve the fastest convergence in the Wang-Landau algorithm with varying modification factors. With this strategy, the convergence of a simulation is at least as good as the conventional Monte Carlo algorithm, i.e. the stati