ﻻ يوجد ملخص باللغة العربية
We propose a strategy to achieve the fastest convergence in the Wang-Landau algorithm with varying modification factors. With this strategy, the convergence of a simulation is at least as good as the conventional Monte Carlo algorithm, i.e. the statistical error vanishes as $1/sqrt{t}$, where $t$ is a normalized time of the simulation. However, we also prove that the error cannot vanish faster than $1/t$. Our findings are consistent with the $1/t$ Wang-Landau algorithm discovered recently, and we argue that one needs external information in the simulation to beat the conventional Monte Carlo algorithm.
We analyze the convergence properties of the Wang-Landau algorithm. This sampling method belongs to the general class of adaptive importance sampling strategies which use the free energy along a chosen reaction coordinate as a bias. Such algorithms a
We present preliminary results of the investigation of the properties of the Markov random walk in the energy space generated by the Wang-Landau probability. We build transition matrix in the energy space (TMES) using the exact density of states for
We present modified Wang-Landau algorithm for models with continuous degrees of freedom. We demonstrate this algorithm with the calculation of the joint density of states $g(M,E)$ of ferromagnet Heisenberg models. The joint density of states contains
Monte Carlo simulations using the newly proposed Wang-Landau algorithm together with the broad histogram relation are performed to study the antiferromagnetic six-state clock model on the triangular lattice, which is fully frustrated. We confirm the
We report on numerical simulations of the two-dimensional Blume-Capel ferromagnet embedded in the triangular lattice. The model is studied in both its first- and second-order phase transition regime for several values of the crystal field via a sophi