ﻻ يوجد ملخص باللغة العربية
We study the performance of Monte Carlo simulations that sample a broad histogram in energy by determining the mean first-passage time to span the entire energy space of d-dimensional ferromagnetic Ising/Potts models. We first show that flat-histogram Monte Carlo methods with single-spin flip updates such as the Wang-Landau algorithm or the multicanonical method perform sub-optimally in comparison to an unbiased Markovian random walk in energy space. For the d=1,2,3 Ising model, the mean first-passage time tau scales with the number of spins N=L^d as tau propto N^2L^z. The critical exponent z is found to decrease as the dimensionality d is increased. In the mean-field limit of infinite dimensions we find that z vanishes up to logarithmic corrections. We then demonstrate how the slowdown characterized by z>0 for finite d can be overcome by two complementary approaches - cluster dynamics in connection with Wang-Landau sampling and the recently developed ensemble optimization technique. Both approaches are found to improve the random walk in energy space so that tau propto N^2 up to logarithmic corrections for the d=1 and d=2 Ising model.
The diagrammatic Monte Carlo (Diag-MC) method is a numerical technique which samples the entire diagrammatic series of the Greens function in quantum many-body systems. In this work, we incorporate the flat histogram principle in the diagrammatic Mon
We examine the sources of error in the histogram reweighting method for Monte Carlo data analysis. We demonstrate that, in addition to the standard statistical error which has been studied elsewhere, there are two other sources of error, one arising
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, bu
The Quantum Monte Carlo (QMC) method can yield the imaginary-time dependence of a correlation function $C(tau)$ of an operator $hat O$. The analytic continuation to real-time proceeds by means of a numerical inversion of these data to find the respon
In this work, we present a comparative study of the accuracy provided by the Wang-Landau sampling and the Broad Histogram method to estimate de density of states of the two dimensional Ising ferromagnet. The microcanonical averages used to describe t