ﻻ يوجد ملخص باللغة العربية
We present a systematic analysis of molecular oxygen (O$_2$) adsorption trends on bimetallic PtNi clusters and their monometallic counterparts supported on MgO(100), by means of periodic DFT calculations for sizes between 25 up to 58 atoms. O$_2$ adsorption was studied on a variety of inequivalent sites for different structural motifs, such as truncated octahedral (TO), cuboctahedral (CO), icosahedral (Ih) and decahedral (Dh) geometries. We found that O$_2$ prefers to bind on top of two metal atoms, parallel to the cluster, with an average chemisorption energy of 1.09 eV (PtNi), 1.07 eV (Pt) and 2.09 eV (Ni), respectively. The largest adsorption energy values are found to be along the edges between two neighbouring (111)/(111) and (111)/(100) facets; while FCC and HCP sites located on the (111) facets may show a chemisorption value lower 0.3 eV where often fast O$_2$ dissociation easily occurs. Our results show that, even though it is difficult to disentangle the geometrical and electronic effects on the oxygen molecule adsorption, there is a strong correlation between the calculated general coordination number (GCN) and the chemisorp- tion map. Finally, the inclusion of dispersion corrections (DFT-D) leads to an overall increase on the calculated adsorption energy values but with a negligible alteration on the general O$_2$ adsorption trends.
Diffusion Monte Carlo (DMC) calculations were performed for an accurate description of the nature of the O$_2$ adsorption on a single layer graphene. We investigated the stable orientation of O$_2$ at a specific adsorption site as well as its equilib
We have studied the adsorption of NO on small Rh clusters, containing one to five atoms, using density functional theory in both spin-polarized and non-spin-polarized forms. We find that NO bonds more strongly to Rh clusters than it does to Rh(100) o
Based on first-principles calculations, we show that the maximum reachable concentration $x$ in the (Ga$_{1-x}$In$_x$)$_2$O$_3$ alloy in the low-$x$ regime (i.e. In solubility in $beta$-Ga$_2$O$_3$) is around 10%. We then calculate the band alignment
The adsorption energies and orientation of methanol on graphene are determined from first-principles density functional calculations. We employ the well-tested vdW-DF method that seamlessly includes dispersion interactions with all of the more close-
Knowledge of the molecular frontier levels alignment in the ground state can be used to predict the photocatalytic activity of an interface. The position of the adsorbates highest occupied molecular orbital (HOMO) levels relative to the substrates va