ﻻ يوجد ملخص باللغة العربية
We have studied the adsorption of NO on small Rh clusters, containing one to five atoms, using density functional theory in both spin-polarized and non-spin-polarized forms. We find that NO bonds more strongly to Rh clusters than it does to Rh(100) or Rh(111); however, it also quenches the magnetism of the clusters. This (local) effect results in reducing the magnitude of the adsorption energy, and also washes out the clear size-dependent trend observed in the non-magnetic case. Our results illustrate the competition present between the tendencies to bond and to magnetize, in small clusters.
Through comprehensive density functional calculations, the crystallographic, magnetic and electronic properties of $Na_xCoO_2$ ($x$ = 1, 0.875, 0.75, 0.625 and 0.50) were investigated. We found that all Na ions in $NaCoO_2$ and $Na_{0.875}CoO_2$ shar
Using ab initio methods based on density functional theory, the electronic and magnetic structure of layered hexagonal NbSe$_{2}$ is studied. In the case of single-layer NbSe$_{2}$ it is found that, for all the functionals considered, the magnetic so
The evolution of the electronic structure and magnetic properties with Co substitution for Fe in the solid solution Fe$_{1-x}$Co$_x$Ga$_3$ was studied by means of electrical resistivity, magnetization, ab-initio band structure calculations, and nucle
We report the observation of an extreme magnetoresistance (XMR) in HoBi with a large magnetic moment from Ho f-electrons. Neutron scattering is used to determine the magnetic wave vectors across several metamagnetic (MM) transitions on the phase diag
Ca3CoMnO6 is composed of CoMnO6 chains made up of face-sharing CoO6 trigonal prisms and MnO6 octahedra. The structural, magnetic, and ferroelectric properties of this compound were investigated on the basis of density functional theory calculations.