ﻻ يوجد ملخص باللغة العربية
Diffusion Monte Carlo (DMC) calculations were performed for an accurate description of the nature of the O$_2$ adsorption on a single layer graphene. We investigated the stable orientation of O$_2$ at a specific adsorption site as well as its equilibrium adsorption energy. At equilibrium adsorption distances, an O$_2$ molecule was found to prefer a horizontal orientation, where the O-O bond is parallel to the graphene surface, to the vertical orientation. However, the vertical orientation is favored at the O$_2$-graphene distances shorter than the equilibrium distance, which could be understood by the steric repulsion between O and C atoms. Contrary to previous DFT calculations, our DMC calculations show that the midpoint of a C-C bond (a bridge site) is energetically preferred for the O$_2$ adsorption to a center of a hexagonal ring (a hollow site). The lowest DMC adsorption energy was found at an intermediate point between a hollow and a bridge site, where the O$_2$ adsorption energy was estimated to be -0.142(4) eV that was in very good agreement with the recently-reported experimental value. Finally, we have found that O$_2$ is very diffusive on the surface of graphene with the diffusion barrier along a bridge-hollow-bridge path being as small as ~ 11 meV.
We present density-functional theory (DFT) and quantum Monte Carlo (QMC) calculations designed to resolve experimental and theoretical controversies over the optical properties of H-terminated C nanoparticles (diamondoids). The QMC results follow the
In this work, we adopt first-principle calculations based on density functional theory and Kinetic Monte Carlo simulations to investigate the adsorption and diffusion of lithium in bilayer graphene (BLG) as anodes in lithium-ion batteries. Based on e
The adsorption and diffusion of F2 molecules on pristine graphene have been studied using first-principles calculations. For the diffusion of F2 from molecular state in gas phase to the dissociative adsorption state on graphene surface, a kinetic bar
The moire superstructure of graphene grown on metals can drive the assembly of molecular architectures, as iron-phthalocyanine (FePc) molecules, allowing for the production of artificial molecular configurations. A detailed analysis of the Gr/Co inte
We present a systematic analysis of molecular oxygen (O$_2$) adsorption trends on bimetallic PtNi clusters and their monometallic counterparts supported on MgO(100), by means of periodic DFT calculations for sizes between 25 up to 58 atoms. O$_2$ ads