ﻻ يوجد ملخص باللغة العربية
The principal aim of this article is to establish an iteration method on the space of resurgent functions. We discuss endless continuability of iterated convolution products of resurgent functions and derive their estimates developing the method in arXiv:1610.05453. Using the estimates, we show the resurgence of formal series solutions of nonlinear differential and difference equations.
In an earlier paper (A. N. Kochubei, {it Pacif. J. Math.} 269 (2014), 355--369), the author considered a restriction of Vladimirovs fractional differentiation operator $D^alpha$, $alpha >0$, to radial functions on a non-Archimedean field. In particul
Nonlinear Young integrals have been first introduced in [Catellier,Gubinelli, SPA 2016] and provide a natural generalisation of classical Young ones, but also a versatile tool in the pathwise study of regularisation by noise phenomena. We present her
We shall give bounds on the spacing of zeros of certain functions belonging to the Laguerre-Polya class and satisfying a second order differential equation. As a corollary we establish new sharp inequalities on the extreme zeros of the Hermite, Lague
We investigate the structure of $tau$-functions for the elliptic difference Painleve equation of type $E_8$. Introducing the notion of ORG $tau$-functions for the $E_8$ lattice, we construct some particular solutions which are expressed in terms of e
We comprehensively study admissible transformations between normal linear systems of second-order ordinary differential equations with an arbitrary number of dependent variables under several appropriate gauges of the arbitrary elements parameterizin