ﻻ يوجد ملخص باللغة العربية
We present experimental observations of a non-resonant dynamic Stark shift in strongly coupled microcavity quantum well exciton-polaritons - a system which provides a rich variety of solid-state collective phenomena. The Stark effect is demonstrated in a GaAs/AlGaAs system at 10K by femtosecond pump-probe measurements, with the blue shift approaching the meV scale for a pump fluence of 2 mJcm^-2 and 50 meV red detuning, in good agreement with theory. The energy level structure of the strongly coupled polariton Rabi-doublet remains unaffected by the blue shift. The demonstrated effect should allow generation of ultrafast density-independent potentials and imprinting well-defined phase profiles on polariton condensates, providing a powerful tool for manipulation of these condensates, similar to dipole potentials in cold atom systems.
We consider the possible phases of microcavity polaritons tuned near a bipolariton Feshbach resonance. We show that, as well as the regular polariton superfluid phase, a molecular superfluid exists, with (quasi-)long-range order only for pairs of pol
We demonstrate, experimentally and theoretically, a Talbot effect for hybrid light-matter waves -- exciton-polariton condensate formed in a semiconductor microcavity with embedded quantum wells. The characteristic Talbot carpet is produced by loading
Bose-Einstein condensate of exciton polaritons in a semiconductor microcavity is a macroscopically populated coherent quantum state subject to concurrent pumping and decay. Debates about the fundamental nature of the condensed phase in this open quan
Microcavity exciton-polaritons, known to exhibit non-equilibrium Bose condensation at high critical temperatures, can be also brought in thermal equilibrium with the surrounding medium and form a quantum degenerate Bose-Einstein distribution. It happ
We present a simple method to create an in-plane lateral potential in a semiconductor microcavity using a metal thin-film. Two types of potential are produced: a circular aperture and a one-dimensional (1D) periodic grating pattern. The amplitude of