ﻻ يوجد ملخص باللغة العربية
This work describes morphological and crystalline properties of the InAs islands grown on templates created by focused ion beam (FIB) on indium phosphide (InP) substrates. Regular arrangements of shallow holes are created on the InP (001) surfaces, acting as preferential nucleation sites for InAs islands grown by Metal-Organic Vapor Phase Epitaxy. Ion doses ranging from $10^{15}$ to $10^{16}$ $Ga^{+}$/$cm^{2}$ were used and islands were grown for two sub-monolayer coverages. We observe the formation of clusters in the inner surfaces of the FIB produced cavities and show that for low doses templates the nanostructures are mainly coherent while templates created with large ion doses lead to the growth of incoherent islands with larger island density. The modified island growth is described by a simple model based on the surface potential and the net adatom flow to the cavities. We observe that obtained morphologies result from a competition between coarsening and coalescence mechanisms.
We have prepared iron microwires in a combination of focused electron beam induced deposition (FEBID) and autocatalytic growth from the iron pentacarbonyl, Fe(CO)5, precursor gas under UHV conditions. The electrical transport properties of the microw
Recent advances in focused ion beam technology have enabled high-resolution, direct-write nanofabrication using light ions. Studies with light ions to date have, however, focused on milling of materials where sub-surface ion beam damage does not inhi
Focused ion beam (FIB) microscopy suffers from source shot noise - random variation in the number of incident ions in any fixed dwell time - along with random variation in the number of detected secondary electrons per incident ion. This multiplicity
A focused ion beam is used to mill side holes in air-silica structured fibres. By way of example, side holes are introduced in two types of air-structured fibres (1) a photonic crystal four-ring fibre and (2) a 6-hole single ring step index structured fibre.
We present a detailed x-ray diffraction study of the strain in InAs/GaSb superlattices grown by molecular beam epitaxy. The superlattices were grown with either InSb or GaAs interfaces. We show that the superlattice morphology, either planar or nanos