ﻻ يوجد ملخص باللغة العربية
Dopants of transition metal ions in II-VI semiconductors exhibit native 2+ valency. Despite this, 3+ or mixed 3+/2+ valency of iron ions in ZnO was reported previously. Several contradictory mechanisms have been put forward for explanation of this fact so far. Here, we analyze Fe valency in ZnO by complementary theoretical and experimental studies. Our calculations within the generalized gradient approximation (GGA+U) indicate that the Fe ion is a relatively shallow donor. Its stable charge state is Fe2+ in ideal ZnO, however, the high energy of the (+/0) transition level enhances the compensation of Fe2+ to Fe3+ by non-intentional acceptors in real samples. Using several experimental methods like electron paramagnetic resonance, magnetometry, conductivity, excitonic magnetic circular dichroism and magneto-photoluminescence we confirm the 3+ valency of the iron ions in polycrystalline (Zn,Fe)O films with the Fe content attaining 0.2%.We find a predicted increase of n-type conductivity upon the Fe doping with the Fe donor ionization energy of 0.25 +/- 0.02 eV consistent with the results of theoretical considerations. Moreover, our magnetooptical measurements confirm the calculated non-vanishing s,p-d exchange interaction between band carriers and localized magnetic moments of the Fe3+ ions in the ZnO, being so far an unsettled issue.
This work presents results of near-band gap magnetooptical studies on (Zn,Mn)O epitaxial layers. We observe excitonic transitions in reflectivity and photoluminescence, that shift towards higher energies when the Mn concentration increases and split
We present a spectroscopic study of (Zn,Co)O layers grown by molecular beam epitaxy on sapphire substrates. (Zn,Co)O is commonly considered as a promising candidate for being a Diluted Magnetic Semiconductor ferromagnetic at room temperature. We perf
We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM = Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn1-xTMxO, the localized TM2+ configu
Hybrid structures synthesized from different materials have attracted considerable attention because they may allow not only combination of the functionalities of the individual constituents but also mutual control of their properties. To obtain such
(Ga,Fe)Sb is a promising ferromagnetic semiconductor for practical spintronic device applications because its Curie temperature ($T_{rm C}$) is above room temperature. However, the origin of ferromagnetism with high $T_{rm C}$ remains to be elucidate